UMass Sesquicentennial

Deep geothermal resource potential in Connecticut; progress report

TitleDeep geothermal resource potential in Connecticut; progress report
Publication TypeConference Proceedings
Year of Publication2012
AuthorsGagnon, TK, Koteas, CG, Thomas, MA, Mabee, SB, Rhodes, JM
Conference NameAbstracts with Programs - Geological Society of America
Volume44
Pagination77 - 77
Date Published2012/02/01/
PublisherGeological Society of America (GSA) : Boulder, CO, United States
Conference LocationUnited States
ISBN Number00167592
Keywords#StaffPubs, Connecticut, Economic geology, geology of energy sources 29A, energy sources, geothermal energy, geothermal exploration, geothermal gradient, granites, heat flow, igneous rocks, New England, plutonic rocks, temperature, thermal conductivity, United States
Abstract

The Connecticut and Massachusetts Geological Surveys are collaborating on a National Geothermal Data Project funded by the US Department of Energy through the Association of American State Geologists.Geothermal resources in Connecticut (CT) to date have been exploited using near surface ground source heat pump technology. This is the first investigation of CT deep geothermal resources. Many CT granitoids contain heat producing elements. The goal is to identify geologic units capable of producing enough heat, at reasonable drilling depths, to operate a viable geothermal power plant. Target rock units must contain enough uranium, thorium and potassium (U/Th/K) in combination with heat generated through the natural geothermal gradient of the Earth to generate electricity and co-produced direct heating. Heat at depth can be concentrated by an overlying insulating layer of sedimentary rocks and glacial sediments. 27 CT bedrock units were selected for sampling using existing mapping. 120 samples were analyzed using X-Ray Fluorescence Spectrometry. Heat production values (HPVs) at or greater than 4 mu W/m (super 3) were considered to be of interest. Values ranging from 4 to 18 mu W/m (super 3) were calculated for 7 of the 27 rock units. Elevated concentrations of thorium, ranging from 10.5 ppm to 245 ppm, were the primary contributors to increased HPVs. Initial results indicate that the warmest rocks are Permian and Precambrian, which is consistent with earlier results from granitoid bodies underlying the Atlantic Coastal Plain of Virginia (Speer et al., 1979). Additional bedrock samples will be analyzed to further characterize geochemical variations and potential HPVs of target rock units. Direct thermal conductivity measurements are being made of select bedrock samples in addition to sedimentary rocks of the Hartford Basin. Theoretical thermal profiles derived from rock geochemistry will provide an estimate of heat generated at depth for geologic units of interest and assist in determining the potential for an insulating layer overlying heat producing granitoids. Direct thermal conductivity measurements of unconsolidated materials throughout CT are also being made to support the ground-source heat pump industry. All data and mapping will be accessible via the National Geothermal Data System (NGDS).

URLhttps://gsa.confex.com/gsa/2012NE/finalprogram/abstract_200494.htm
Short TitleAbstracts with Programs - Geological Society of America
For more info contact: 

Location

The MA Geological Survey
Department of Geosciences
269 Morrill Science Center
University of Massachusetts
611 North Pleasant Street
Amherst, MA 01003-9297

Contact Us

Ph: (413) 545-4814
Fax: (413) 545-1200

stategeologist at geo dot umass dot edu
 

Follow us!

Instagram