@book {33, title = {Roadside Geology of Massachusetts}, year = {2001}, publisher = {Mountain Press}, organization = {Mountain Press}, keywords = {educational resources, GEOLOGY, massachusetts}, author = {James W. Skehan} } @proceedings {271, title = {Arsenic in central Massachusetts bedrock and groundwater}, volume = {42}, year = {2010}, note = {Accession Number: 2011-044094; Conference Name: Geological Society of America, 2010 annual meeting; Denver, CO, United States; Conference Date: 20101031; Language: English; Coden: GAAPBC; Collation: 2; Collation: 216-217; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201125; Monograph Title: Geological Society of America, 2010 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2010/11/01/}, pages = {216 - 217}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Across the New England "arsenic belt," groundwater arsenic (As) concentrations often exceed the EPA{\textquoteright}s 0.01-mg/L drinking water standard. In overburden groundwater at a site within this belt in north-central Massachusetts, As has been reported at levels up to 7.6 mg/L. Bedrock at the site consists of Silurian Central Maine Terrane metasediments intruded by the Devonian Ayer granodiorite and Chelmsford granite. Exchange of hydrothermal fluids between these lithologies during intrusion and later deformation, faulting, and metamorphism resulted in crystallization of arsenic-bearing minerals, including arsenopyrite. Quaternary deglaciation and unloading dilated joint systems in the bedrock, allowing increased exposure of the mineralogy to meteoric water. Several arsenopyrite alteration products (e.g., scorodite), of varying solubilities, precipitated on fracture surfaces and along grain boundaries between major phases. In the emerging conceptual model for this site, groundwater is recharged in bedrock uplands and moves downgradient through the fracture network, becoming increasingly reducing as it moves along a flow path. Arsenic dissolved from arsenopyrite and arsenic-bearing alteration phases in bedrock remains in solution until the groundwater discharges to lowland areas hydraulically downgradient. In these adjacent lowlands, glacial sand and gravel overburden lies above the bedrock. When the reducing water reaches more oxidizing conditions, As-sorbing hydrous ferric oxides (HFO) precipitate out on the aquifer solids, resulting in accumulation of As in the deep overburden aquifer. A large landfill at this site, now closed and capped, imposed reducing conditions, and As is mobilized into groundwater by reductive dissolution of the HFO. The presence of elevated As in groundwater is consistent with arsenic-bearing phases generated in granitoids at depth during regional metamorphism, which were subsequently altered, and are being solubilized at present by the circulation of shallow groundwater through varying redox environments. This scenario is supported by geochemical and petrographic studies of the granitoids and the occurrence of the highest groundwater and soil arsenic concentrations in the adjacent deep overburden.}, keywords = {$\#$StaffPubs, alteration, arsenic, arsenides, arsenopyrite, Ayer Granodiorite, BEDROCK, central Massachusetts, chelmsford granite, Devonian, dilation, discharge, dissolved materials, drinking water, Eh, fractures, General geochemistry 02A, geochemistry, granites, ground water, igneous rocks, joints, massachusetts, metals, metamorphism, meteoric water, overburden, Paleozoic, petrography, plutonic rocks, pollutants, reduction, solubility, solution, sulfides, theoretical models, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2010AM/finalprogram/abstract_182430.htm}, author = {McTigue, David F. and Stein, Carol L. and Brandon, William C. and Joseph P Kopera and Keskula, Anna J. and Koteas, G. Christopher} } @proceedings {272, title = {Characterizing fractured crystalline bedrock aquifers using hydrostructural domains in the Nashoba Terrane, eastern Massachusetts}, volume = {38}, year = {2006}, note = {Accession Number: 2007-032741; Conference Name: Geological Society of America, 2006 annual meeting; Philadelphia, PA, United States; Conference Date: 20061022; Language: English; Coden: GAAPBC; Collation: 1; Collation: 25; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200709; Monograph Title: Geological Society of America, 2006 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2006/10/01/}, pages = {25 - 25}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Fractured crystalline bedrock aquifers are good sources of potable water in many parts of the world. However, siting of highly productive wells in these rock units remains a challenging and expensive task because fracture development at the regional scale is both heterogeneous and anisotropic. Using low cost field data to define units of rock that have similar lithologic and fracture characteristics can significantly reduce time and energy spent on determining areas with better than average aquifer productivity. These physical characteristics that impart a particular hydraulic character on rocks are used to delineate regions with similar hydrologic characteristics called hydrostructural domains (Mackie, 2002). Hydrostructural domains are delineated from fracture characterization data that were collected from 79 outcrops located in the Nashoba Terrane of eastern Massachusetts. Information collected and used to delineate the domains include the number and distribution of fracture sets, types of fractures present or absent, the degree of fracture development, fracture intensity/density, fracture connectivity and rock type. Discrete fracture networks are generated from the fracture characterization data to simulate groundwater flow in the region. Conductivity of particular units is evaluated and compared to results from existing pumping tests obtained from the US Geological Survey. Preliminary results indicate that there is great value in utilizing fracture characteristic data obtained from surface outcrops to predict subsurface groundwater flow characteristics of fractured bedrock aquifers. Water managers, developers and decision makers are eager to know which areas are the most promising for encountering highly conductive zones in the subsurface. Collecting extensive structural data from surface outcrops, although not as accurate as drilling wells, is a cheaper alternative that could provide at least a rough estimate of the hydraulic properties of fractured rocks leading to effective siting of new water wells. Hydrostructural domain maps may pinpoint specific areas that have a high potential for wells to encounter highly conductive zones and could therefore be a powerful tool in transferring information from one site to another without having to repeatedly undertake extensive site characterization.}, keywords = {$\#$StaffPubs, anisotropy, aquifers, BEDROCK, characterization, connectivity, crystalline rocks, eastern Massachusetts, fractures, ground water, heterogeneity, hydraulic conductivity, Hydrogeology 21, massachusetts, Nashoba terrane, outcrops, physical properties, site exploration, United States, water wells}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2006AM/finalprogram/abstract_113075.htm}, author = {Alex K Manda and Stephen B Mabee and David F Boutt} } @proceedings {273, title = {Comparison of lineaments with bedrock structures along a cross-strike transect, eastern Massachusetts}, volume = {30}, year = {1998}, note = {Accession Number: 1999-032582; Conference Name: Geological Society of America, 1998 annual meeting; Toronto, ON, Canada; Conference Date: 19981026; Language: English; Coden: GAAPBC; Collation: 1; Collation: 278; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 199912; Monograph Title: Geological Society of America, 1998 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1998/01/01/}, pages = {278 - 278}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Lineament data derived from three platforms, 1:58,000 color infrared photography (N = 770), 1:80,000 black and white photographs (N = 1106), and 1:250,000 SLAR imagery (N = 521), were used to determine the degree of coincidence between mapped faults and lineaments along a cross strike transect in eastern Massachusetts. The study area extends 27 km in an east-west direction and 8 km north-south and is located along the trace of a tunnel currently being constructed approximately 90 m below grade. Structural data are presently being collected from surface exposures along the tunnel trace and from within the 5 m diameter tunnel bore. These structural data will be compared with lineament data in the future. Reported here are the results of a comparison between the locations of lineaments and the position of major faults mapped on the Bedrock Geologic Map of Massachusetts (1:250,000). Lineaments were first mapped on acetate overlays in two independent trials and compared to determine which lineaments could be reproduced at the same geographic location. Reproducibility results indicate that 21 to 33\% of the lineaments can be reproduced at the same spatial position and are comparable to results obtained from other studies. The length of reproducible lineaments proximal to and approximately parallel with mapped faults was compared with the total length of faults (137 km) within the study area. Results show that a small percentage of the faults are coincident with reproducible lineaments. Three percent of the lengths are mapped by reproducible lineaments observed on the SLAR imagery, 7\% by the 1:80,000 scale photographs, and 5\% by the 1:58,000 color infrared photography. This indicates that 97\%, 93\%, and 95\% of the reproducible lineaments, respectively, are related to other geologic features in the bedrock or nothing at all.}, keywords = {$\#$StaffPubs, aerial photography, BEDROCK, eastern Massachusetts, faults, geophysical surveys, imagery, lineaments, massachusetts, remote sensing, SLAR, Structural geology 16, surveys, tectonics, United States}, isbn = {00167592}, author = {Curry, Patrick J. and Williams, Katherine W. and Stephen B Mabee and Hardcastle, Kenneth C.} } @proceedings {276, title = {Converting paper geologic maps to digital products; the search for an effective method}, volume = {35}, year = {2003}, note = {Accession Number: 2006-037984; Conference Name: Geological Society of America, 2003 annual meeting; Seattle, WA, United States; Conference Date: 20031102; Language: English; Coden: GAAPBC; Collation: 1; Collation: 276; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200611; Monograph Title: Geological Society of America, 2003 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2003/11/01/}, pages = {276 - 276}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {MassGIS and the Office of the Massachusetts State Geologist are working collaboratively with the USGS to vectorize 85, published 7.5-minute surficial geologic maps in order to prepare a statewide coverage of the till-glacial stratified drift boundary. Conversion of old geologic maps from paper copies to new digital products is a complex task requiring an efficient method that minimizes errors and limits the need for heads-up digitizing. The main issue in the conversion is the accurate separation of line work (geologic contacts) on the map from the halftone colors in the polygon fills and achieving this without creating an extensive editing effort in the GIS environment. For this project, we elected to process the scanned and rectified images of the surficial geologic maps in Photoshop and adjust the resulting line work in ArcScan before vectorizing the polygons. Photoshop is an extremely sophisticated, commercial raster image editing software with a very user-friendly interface. Using tools such as the "Magic Wand" (selection of similar pixels with variable threshold control), "Select Color Range" (find all instances of similar colors), "Grow and Contract Selection", "Stroke Selection", and Photoshop "Layers", we are able to create a set of very accurate, noise free boundary lines, before the vectorization process occurs. This methodology is, in effect, "on the fly" editing of the boundary lines, eliminating the large number of errors and artifacts that "automated" vectorizing processes inevitably generate (and which must be tediously edited and/or removed later with vector editing software). Line tracings produced in Photoshop are exported to ArcScan where, using the original raster image as a background, a preview of the proposed vector is adjusted, if needed, using simple editing tools in ArcScan. Once an optimal match is achieved visually, the vectors are generated. The advantage of this approach is that the bulk of the line editing occurs early in the process, prior to vectorization, and can be achieved by moderately trained personnel using "off the shelf" commercial software. This provides greater control of the quality of the finished product because there are no computer generated false lines that need to be found and removed later with a much more complex process.}, keywords = {$\#$StaffPubs, cartography, data bases, data processing, digital cartography, digital data, geographic information systems, geomorphology, Geomorphology 23, government agencies, information systems, mapping, massachusetts, National Geologic Map Database, NGMDB, survey organizations, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2003AM/finalprogram/abstract_64322.htm}, author = {Stephen B Mabee and Newton, R. and Stepanov, A. and Ene, D. and Ivanov, D.} } @proceedings {279, title = {Correlation of lineaments to ground water inflows in the MWRA tunnel}, volume = {33}, year = {2001}, note = {Accession Number: 2004-013313; Conference Name: Geological Society of America, 2001 annual meeting; Boston, MA, United States; Conference Date: 20011101; Language: English; Coden: GAAPBC; Collation: 2; Collation: 114-115; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200405; Monograph Title: Geological Society of America, 2001 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2001/11/01/}, pages = {114 - 115}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Lineaments derived from three image types (1:80,000 black and white (BW), 1:58,000 color infrared (CIR), and 1:250,000 side-looking airborne radar (SLAR)) were compared to water-bearing features within a 9.6 km section of tunnel being constructed through foliated crystalline metamorphic bedrock in a glaciated region of eastern Massachusetts. Lineaments drawn by three observers during two independent trials (N = 9137) were reduced to three sets (one per image type) of coincident lineaments (N = 794). Thirty-five coincident lineaments crossed the tunnel. Nineteen discrete flow zones, each producing less than or equal to 19 L/min, were identified in the tunnel and used to quantify the reliability of lineament analysis as a method of predicting water-bearing features in glaciated metamorphic rocks. Thirteen (68\%) of the flow zones correlate with coincident lineaments, six zones correlate with more than one image type, and one zone correlates with all three image types. Overall, it is difficult to distinguish lineaments that will be successful in predicting water-bearing zones from those that will be unsuccessful without considering other corroborating evidence. Most of the observed flow (80\%) correlates with northwest-trending coincident lineaments. However, the majority of the flow (67\%) associated with these lineaments is produced from structures that strike to the north or northeast. In addition, only fifteen of the thirty-five coincident lineaments correlate with the flow zones indicating that twenty lineaments are not associated with any appreciable flow. Six flow zones are undetected by the lineament analysis. In this study, BW lineaments are able distinguish high-yield through-going structures (at the 90\% confidence level) with greater reliability than the SLAR or CIR lineaments. However, linking bedrock type, overburden type, topographic position, and proximity to surface water bodies with lineament analysis improves the predictive capability of the lineament method.}, keywords = {$\#$StaffPubs, black and white, construction, correlation, eastern Massachusetts, Engineering geology 30, experimental studies, flow rates, geophysical methods, ground water, infrared methods, lineaments, mapping, massachusetts, metamorphic rocks, methods, movement, photogeology, radar methods, remote sensing, SLAR, tectonics, tunnels, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2001AM/finalprogram/abstract_22810.htm}, author = {Stephen B Mabee and Curry, Patrick J. and Hardcastle, Kenneth C.} } @proceedings {263, title = {A cost-effective technique for reconnaissance evaluation of aquifers}, volume = {3}, year = {1983}, note = {Accession Number: 1984-022767; Conference Name: Third national symposium on aquifer restoration and ground-water monitoring; Columbus, OH, United States; Conference Date: 19830525; Language: English; Collation: 7; Collation: 213-219; Publication Types: Serial; Conference document; Updated Code: 1984; Illustration(s): illus. incl. 3 tables, sketch maps; Number of References: 3; Monograph Title: Proceedings of the Third national symposium on aquifer restoration and ground-water monitoring; Monograph Author(s): Nielsen, David M. [editor]; Reviewed Item: Analytic}, month = {1983/01/01/}, pages = {213 - 219}, publisher = {National Water Well Association : Worthington, OH, United States}, address = {United States}, keywords = {$\#$StaffPubs, aquifers, case studies, economics, evaluation, Groton, ground water, hydrogeology, Hydrogeology 21, Mashpee, massachusetts, methods, monitoring wells, Newton, pollution, pump tests, specific capacity, surveys, transmissivity, United States, waste disposal, water resources, water supply, water wells, wells, Westford}, isbn = {07499515}, url = {https://www.google.com/url?sa=t\&rct=j\&q=\&esrc=s\&source=web\&cd=4\&cad=rja\&uact=8\&ved=0CDgQFjAD\&url=http\%3A\%2F\%2Fuwyo.coalliance.org\%2Fislandora\%2Fobject\%2Fwyu\%253A10425\%2Fdatastream\%2FOBJ\%2Fdownload\%2FProceedings_Of_The_Third_National_Symposium_On_Aquifer_R}, author = {Heeley, Richard W. and Stephen B Mabee} } @proceedings {280, title = {Deep geothermal potential of New England granitoids; the Fall River Pluton, southeastern Massachusetts}, volume = {43}, year = {2011}, note = {Accession Number: 2012-031359; Conference Name: Geological Society of America, Northeastern Section, 46th annual meeting; Geological Society of America, North-Central Section, 45th annual meeting; Pittsburgh, PA, United States; Conference Date: 20110320; Language: English; Coden: GAAPBC; Collation: 1; Collation: 63; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201217; Monograph Title: Geological Society of America, Northeastern Section, 46th annual meeting; Geological Society of America, North-Central Section, 45th annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2011/03/01/}, pages = {63 - 63}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Devonian-aged plutonic rocks that are interpreted to be part of the Fall River pluton, along the southern edge of the Narragansett Basin, appear to have potential as a source of deep geothermal energy. The Narragansett Basin covers a approximately 1500 Km (super 2) area in southern Massachusetts and is dominated by complexly deformed and metamorphosed, Pennsylvanian-aged, fluvial and alluvial deposits. A northeast-striking series of brittle faults and discrete shear zones define the southern margin of the basin. Preliminary modeling of igneous and gneissic fabrics from outcrops along the southern edge of the basin show that the granite dips predominantly north, northeast. This pattern suggests that granitoids along the southern edge of the basin continue beneath the Narragansett Basin and correlate with granitoids exposed to the north. Regional joint sets in the Fall River pluton can be grouped into three dominant clusters at 350 degrees , 90 degrees , and 250 degrees based upon 86 field measurements. Low-angle sheeting joints are also common and suggest interconnected fracture networks at depth. Preliminary geochemistry from the Fall River pluton suggests that feldspars and accessory minerals contain the appropriate concentrations of heat producing elements, primarily U, Th, and K, to be a reasonable geothermal resource. K (sub 2) O values range from 2.4 to 5.0 weight percent. U and Th values (in ppm) range from 0.9 to 6.2 and 2.9 to 30.1 respectively. Assuming a relatively consistent composition at depth, a density of 2.6 kg/m (super 3) , and a thermal conductivity of 2.9 W/m degrees C, initial temperature modeling suggests average temperatures of 81 degrees C at depths of 5 kilometers and 93 degrees C at depths of 6 kilometers. Temperature estimates increase to approximately 150 degrees C and approximately 170 degrees C respectively when a two kilometer thick sediment package is modeled overlying the granitoids. The goal of current and future work is to improve assumptions about compositional uniformity as well as the regional position of granitoids at depth. At the conclusion of this work we hope to develop a protocol for studying geothermal potential of buried granitoids in New England in the absence of reliable drill-hole data. Preliminary estimates from this project suggest that basins underlain by granitoids of compositions similar to that of the Fall River pluton have reasonable potential as a deep geothermal resource.}, keywords = {$\#$StaffPubs, depth, Economic geology, geology of energy sources 29A, Fall River Pluton, geochemistry, geothermal energy, gneisses, granites, Igneous and metamorphic petrology 05A, igneous rocks, intrusions, massachusetts, metamorphic rocks, plutonic rocks, plutons, southeastern Massachusetts, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2011NE/finalprogram/abstract_185900.htm}, author = {Goodhue, Nathaniel and Koteas, G. Christopher and John Michael Rhodes and Stephen B Mabee} } @proceedings {284, title = {Evidence for arsenic-mineralization in granitic basement rocks, Ayer Granodiorite, northeastern Massachusetts}, volume = {42}, year = {2010}, note = {Accession Number: 2010-100047; Conference Name: Geological Society of America, Northeastern Section, 45th annual meeting; Geological Society of America, Southeastern Section, 59th annual meeting; Baltimore, MD, United States; Conference Date: 20100314; Language: English; Coordinates: N420800N424400W0710200W0715300; Coden: GAAPBC; Collation: 1; Collation: 160; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201052; Monograph Title: Geological Society of America, Northeastern Section, 45th annual meeting; Geological Society of America, Southeastern Section, 59th annual meeting; joint meeting, abstracts volume; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2010/03/01/}, pages = {160 - 160}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Core samples of the Ayer Granodiorite along the eastern margin of the Merrimack Belt in northeastern Massachusetts host a series of sulfide and oxide phases that resulted from interaction with sulfide-bearing meta-sedimentary host rocks. Euhedral arsenopyrite grains are found with ilmenite, apatite, and REE phosphates in zones that generally mimic the intersection between a gneissic fabric and a relict magmatic foliation. Arsenopyrite crystals are typically elongate with this lineation. Euhedral to subhedral pyrite crystals have also been observed, but are localized to areas without As-bearing phases. Micro-fractures that parallel either a steep NW-striking joint set or gently-dipping sheeting joints are commonly filled with interwoven calcite cements and As-bearing Fe-oxides. Surface coatings of major fracture sets are also characterized by Fe-As-rich rinds that host micron-scale sub-angular particles of quartz, feldspars, and phyllosilicates. Where micro-fractures are most concentrated, sulfide-bearing minerals are less common; however, subhedral to anhedral arsenopyrite grains do occur along some open micro-fractures. These crystals preserve lobate grain boundaries and are associated with As-bearing Fe-oxide-rich coatings along adjacent fractures. The presence of 1) pyrite, 2) arsenopyrite associated with phosphates, and 3) As-bearing fracture coatings suggests multiple stages of mineralization. We propose that intrusion-related fluid-rock interaction associated with heating of nearby sulfide-bearing schists of the Berwick Formation during Acadian orogenesis may have provided the necessary constituents for growth of sulfide phases in the Ayer. It appears that Late Devonian greenschist facies metamorphism and metasomatism led to mineralization that generated arsenopyrite and accompanying phosphates; however, the role of the cross-cutting Clinton Newbury Fault Zone as a conduit for hydrothermal fluids may also be important. Lower temperature As-bearing Fe-oxide and calcite coatings on open fractures surfaces may be associated with a change from lithostatic- to hydrostatic-pressures during post-glacial regional uplift. This mineralization appears to be synchronous with intense microfracturing that post-dates all other mineralization.}, keywords = {$\#$StaffPubs, acadian, arsenic, arsenides, arsenopyrite, Ayer Granodiorite, Berwick formation, fractured materials, geochemistry, granodiorites, Igneous and metamorphic petrology 05A, igneous rocks, lower Paleozoic, massachusetts, Merrimack Synclinorium, metals, metamorphic rocks, metamorphism, metasedimentary rocks, metasomatism, Middlesex County Massachusetts, migration of elements, mineralization, Mineralogy of non-silicates 01C, northeastern Massachusetts, orogeny, Paleozoic, plutonic rocks, pollutants, pollution, pyrite, sulfides, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2010NE/finalprogram/abstract_169998.htm}, author = {Koteas, G. Christopher and Keskula, Anna J. and Stein, Carol L. and McTigue, David F. and Joseph P Kopera and Brandon, William C.} } @proceedings {288, title = {Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 4, Occurrence and characterization of groundwater inflows}, volume = {31}, year = {1999}, note = {Accession Number: 2001-037345; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1999/01/01/}, pages = {348 - 348}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {All occurrences of groundwater inflows in a 9 km long, 5-m diameter section of tunnel, 70 to 90 m below grade, were compared with subsurface fracture density, bedrock topography, surface topography, type of surficial deposits, proximity to surface water bodies, and the geographic distribution (domains; Mabee et al., this volume) of surface and subsurface fractures. Subsurface fracture density was calculated for the 320 fractures (through-going fractures) that intersect the entire circumference of the tunnel. Bedrock topography was determined using bore hole data collected during the design phase of the tunnel project. Surface topography is from 1:25,000 scale topographic maps and surficial geology is based on maps of the Framingham and Natick Quadrangles. Seven surface water bodies, primarily brooks and rivers, overlie the tunnel. Five surface fracture domains are based on 1513 fracture measurements collected from 21 outcrops within 3 km of the tunnel. In the tunnel, 413 fractures (all fractures, dips>45 degrees ) comprise seven subsurface fracture domains. High groundwater inflows generally correlate with areas of high subsurface fracture density and where four or more subsurface fracture domains overlap. In addition, high groundwater inflows are also generally located near surface water bodies and below permeable surficial deposits and topographic depressions, especially those with corresponding lows in the bedrock surface. Moreover, subsurface structures which correlate with prominent surface fracture domains produce the highest volume of groundwater inflow. However, not all tunnel sections exhibiting high fracture density and overlapping fracture domains exhibit high groundwater inflows. Also, there is no correlation between areas where two or more surface fracture domains overlap and the volume of groundwater discharging to the tunnel.}, keywords = {$\#$StaffPubs, BEDROCK, boreholes, characterization, design, discharge, eastern Massachusetts, flows, fractures, Framingham Quadrangle, ground water, Hydrogeology 21, massachusetts, movement, Natik Quadrangle, occurrence, outcrops, surface water, topography, tunnels, United States}, isbn = {00167592}, author = {Williams, Katherine W. and Stephen B Mabee and Hardcastle, Kenneth C. and Curry, Patrick J.} } @proceedings {285, title = {Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 1, Lineaments and subsurface structures}, volume = {31}, year = {1999}, note = {Accession Number: 2001-037333; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 2; Collation: 347-348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1999/01/01/}, pages = {347 - 348}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Lineaments derived from three platforms; 1:250,000 Side-Looking Airborne Radar (SLAR) images, 1:58,000 Color Infrared (CIR) and 1:80,000 Black and White aerial photographs (BW), were compared to water bearing structures (n = 99) within a 9 km, 70 to 90 meter deep, east-west tunnel being constructed in eastern Massachusetts. Lineaments were drawn by three observers during two independent trials to produce 18 sets of lineaments (n = 9137) covering approximately 1,000 km (super 2) centered over the tunnel. All lineaments for each platform were compared. Three or more overlapping lineaments (azimuths within 5 degrees and within 1 mm at the scale of the imagery) define a single coincident lineament. This analysis generated three sets of coincident lineaments (n = 794), of these 37 cross the tunnel. Buffers were placed around the coincident lineaments at a distance of 1 mm from the center of the lineament at the scale of the platform (e.g. 250 m for the SLAR image). The Mann-Whitney U test was used to determine if the median flow from all tunnel structures which underlie the lineament buffer zones is significantly greater than that of all structures outside of the buffer zones. Results indicate that median flow (11,000 l/day) from structures located within the buffer zones of the BW are significantly greater at the 90\% confidence level than the median flow (5,500 l/day) of structures located outside the buffer zones. No significant differences in flow were found for the other two platforms. Subsurface structures that parallel coincident lineaments (all platforms) and occur within the buffer zones have higher median flow (10,500 l/day) than those structures outside the buffer zones (6,600 l/day). However, this difference is significant at the 70\% confidence level. These results suggest that, in some instances, a thorough lineament analysis can predict water-bearing subsurface structures in poorly exposed, glaciated, metamorphic terrain that has a high degree of suburban development.}, keywords = {$\#$StaffPubs, BEDROCK, eastern Massachusetts, fractures, geophysical surveys, ground water, Hydrogeology 21, lineaments, massachusetts, metamorphic rocks, movement, New England, remote sensing, SLAR, strike, surveys, tectonics, tunnels, United States}, isbn = {00167592}, author = {Curry, Patrick J. and Hardcastle, Kenneth C. and Stephen B Mabee and Williams, Katherine W.} } @proceedings {287, title = {Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 3, Surface vs. subsurface fracture characteristics}, volume = {31}, year = {1999}, note = {Accession Number: 2001-037340; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1999/01/01/}, pages = {348 - 348}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Major fracture sets (dip >45 degrees ), their geographic distributions (domains), and their characteristics (spacing, trace length, and planarity) were measured in surface outcrops and in a 9 km section of the tunnel (Curry et al., this volume) to determine how well fracture data collected at widely-spaced surface exposures can be extrapolated to a depth of 70 to 90 meters. For the surface fracture data set, fracture sets and domains were determined from 1513 measurements collected at 21 outcrops located within 3 km of the trace of the tunnel. Spacing, trace length, and planarity were determined from scanline measurements (n = 899). For the tunnel data set, 413 fracture measurements were made to determine major sets and domains and a smaller subset (n = 156) was used to estimate fracture characteristics.Five fracture sets (14, 38, 86, 117, and 171) were identified in the outcrops and seven sets (13, 29, 41, 62, 132, 159, and 175) in the tunnel. The 14 and 171 sets correspond well with the 13 and 175 sets in the tunnel. The 38 set observed at the surface includes parts of the 29 and 41 sets in the tunnel. The 86 set does occur in the tunnel but is undersampled because it is aligned with the tunnel. The 62 and 159 sets occur in the tunnel but are not seen at the surface. Although large areas are devoid of outcrops, comparison of surface and subsurface fracture domains indicates that only the 14 and 171 sets show a reasonable overlap with the 13 and 175 domains in the tunnel. These latter sets are the fractures generating most of the groundwater inflow into the tunnel. Median fracture spacing and trace lengths for the 13 and 175 sets in the tunnel are significantly wider and longer than the corresponding 14 and 171 sets at the surface. Fracture planarities showed no significant differences between any of the surface and subsurface fracture sets.}, keywords = {$\#$StaffPubs, BEDROCK, controls, eastern Massachusetts, factors, fractures, ground water, Hydrogeology 21, massachusetts, measurement, movement, New England, outcrops, spatial distribution, tunnels, United States}, isbn = {00167592}, author = {Stephen B Mabee and Williams, Katherine W. and Curry, Patrick J. and Hardcastle, Kenneth C.} } @proceedings {289, title = {Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 5, Geochemical interpretation of groundwater inflows}, volume = {31}, year = {1999}, note = {Accession Number: 2001-037342; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1999/01/01/}, pages = {348 - 348}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Samples of ground and surface waters in and above the tunnel (Curry et al., this volume) were collected to characterize the chemistry of groundwater discharging from fractures and faults. Forty-two water samples were collected: 32 along a transect of the tunnel and 10 from surface waters above the trace of the tunnel. All samples were analyzed for major anions and cations, and delta (super 18) O. Analysis of the anion/cation data indicated that these waters are dominated by sulfate+chloride and calcium+magnesium. However, five sub-classifications can be discerned based on the relative concentrations of ions in the samples. The five sub-classifications are Cl > HCO (sub 3) > SO (sub 4) > NO (sub 3) :Ca > Na+K > Mg (15 samples), Cl > HCO (sub 3) > SO (sub 4) > NO (sub 3) :Na+K > Ca > Mg (7 samples), Cl > HCO (sub 3) > SO (sub 4) > NO (sub 3) :Ca > Mg > Na+K (6 samples), Cl > SO (sub 4) > HCO (sub 3) > NO (sub 3) :Na+K > Ca > Mg (3 samples), and HCO (sub 3) > Cl > SO (sub 4) > NO (sub 3) :Ca > Na+K > Mg (2 samples). Results from statistical analyses indicate that alkalinity, calcium, sodium and potassium do vary as a function of bedrock type and that these differences are significant at the 95\% confidence level.In addition, preliminary oxygen isotope data indicate that two large, discrete water producing fault zones located in the eastern part of the tunnel are isotopically enriched (average delta (super 18) O = -7.75) relative to other water producing features in the tunnel (average delta (super 18) O = -8.96). The delta (super 18) O values obtained from all surface water bodies located above the tunnel average -7.56 whereas those values in surface ponds immediately above the fault zones average -6.71. Nitrate levels also show elevated levels in two water producing fault zones (>10 mg/L for some samples) and may result from accidental contamination during sampling, the use of explosives at discrete locations in the tunnel, or from leaking septic systems. The results of the oxygen isotope and nitrate analyses also suggest that some of the fault zones in the tunnel may have a rapid and direct hydraulic connection to the surface.}, keywords = {$\#$StaffPubs, anions, BEDROCK, cations, classification, discharge, eastern Massachusetts, fault zones, faults, geochemistry, ground water, hydraulic conductivity, hydrochemistry, Hydrogeology 21, Isotope geochemistry 02D, isotope ratios, isotopes, massachusetts, movement, New England, nitrate ion, O-18/O-16, oxygen, samples, stable isotopes, surface water, tunnels, United States}, isbn = {00167592}, author = {Weaver, Rebecca A. and Stephen B Mabee and Williams, Katherine W. and Curry, Patrick J.} } @proceedings {286, title = {Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 2, Fracture-supported coincident lineaments and subsurface structures}, volume = {31}, year = {1999}, note = {Accession Number: 2001-037344; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1999/01/01/}, pages = {348 - 348}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {As part of the evaluation of the ability of lineaments to map subsurface structures, the coincident lineaments which intersect the tunnel (Curry et al., this volume), were evaluated to isolate those lineaments considered to be "fracture-supported". By definition, fracture-supported coincident lineaments are those which parallel nearby surface fracture sets, mapped faults, lithologic contacts, and/or primary ductile structures; features which may be influential to subsurface groundwater flow. Of the 37 coincident lineaments delineated on the three scales of imagery studied, approximately 70\% are considered to be fracture-supported: 9 of the 13 on the 1:58,000 scale images, 10 of 14 on the 1:80,000, and 8 of 10 on the 1:250,000. However, the general lack of surface exposure precludes high confidence in the assignment of fracture-supported status to most lineaments. Large areas devoid of outcrops necessitated extrapolation of regional, surface fracture patterns (domains) to help define some fracture-supported coincident lineaments. There are two occurrences where fracture-supported coincident lineaments from all three scales overlap and are parallel. One occurrence successfully maps the zone of greatest fracture density and highest groundwater inflow (>560 l/min). The other occurrence maps an area of high fracture density and significant subsurface flow (95 l/min). In addition, one other high flow zone (>190 l/min) is mapped by a fracture-supported coincident lineament from the 1:80,000 scale imagery. However, many subsurface fractures and flow zones (<75 l/min) are not mapped by the coincident lineaments regardless of whether or not they are fracture-supported. When considering all fracture-supported coincident lineaments and parallel subsurface structures, the median flow (13,600 l/day) for the mapped structures is greater than the unmapped structures (6,800 liters/day). However, this difference is only significant at the 60\% confidence level.Although the tunnel sections with the greatest fracture density and highest groundwater inflows are successfully mapped by fracture supported coincident lineaments, not all water-bearing zones are delineated.}, keywords = {$\#$StaffPubs, BEDROCK, controls, eastern Massachusetts, factors, fractures, ground water, Hydrogeology 21, imagery, lineaments, massachusetts, movement, New England, outcrops, Structural geology 16, tectonics, tunnels, United States}, isbn = {00167592}, author = {Hardcastle, Kenneth C. and Curry, Patrick J. and Williams, Katherine W. and Stephen B Mabee} } @proceedings {291, title = {Field mapping and fracture characterization techniques predict groundwater preferential flow paths in fractured bedrock aquifers, Nashoba Terrane, MA}, volume = {86}, year = {2005}, note = {Accession Number: 2009-053313; Conference Name: American Geophysical Union 2005 fall meeting; San Francisco, CA, United States; Conference Date: 20051205; Language: English; Coordinates: N420800N424400W0710200W0715300; Coden: EOSTAJ; Collation: -1; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200930; Monograph Title: AGU 2005 fall meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2005/12/01/}, pages = {1477}, publisher = {American Geophysical Union : Washington, DC, United States}, edition = {Special supplement}, address = {United States}, abstract = {A study examining the relationship between fracture characteristics and groundwater was undertaken in the crystalline Nashoba Terrane of eastern Massachusetts. The Nashoba Terrane, a fault-bounded, highly deformed sliver of Paleozoic igneous and metamorphic rocks, covers an area of 600 sq km about 50 km northwest of Boston. Increasing industrial development coupled with population growth place significant pressure on developers to provide sufficient potable water for the population. To aid water development and management, this study examined fracture characteristics at regional, quadrangle and wellfield scales. The regional-scale work involved recording over 4000 structural measurements from 80 outcrops in the terrane. Fracture information recorded at each data station included strike and dip, trace length, spacing, termination, and fracture type. Preliminary results show that hydrostructural domains can be defined from combinations of fracture characterization and rock types. These domains are used to conceptualize general groundwater flow patterns in the subsurface: steeply dipping fractures, such as partings parallel to foliation enhance recharge potential and impose strong flow anisotropy. A different character is observed if steeply dipping joints intersect sheeting joints. In this instance, both recharge and lateral flow will be enhanced and flow anisotropy will be reduced. The distribution and intensity of particular fracture sets varies as a function of rock type, proximity to major features and local stress states. Partings parallel to foliation are prevalent in gneissic rocks whereas sheeting joints are more common in igneous rocks. Common joints are the most prevalent fractures, present in all rock types across the entire terrane. Quadrangle and wellfield scale data can be used to validate the regional-scale conceptual models. A comprehensive well-yield database was created to test the proposed models. Over 500 water wells in the terrane were evaluated to determine regions with high and low yield. The findings were evaluated in terms of location with respect to newly defined hydrostructural domain maps at both regional and quadrangle scales. Application of these hydrostructural domains in field studies can be useful not only in characterizing fracture intensity and distribution, but can shed more light on the potential of intersecting subsurface zones that could be exploited for economic gain. }, keywords = {$\#$StaffPubs, aquifers, BEDROCK, characterization, fractured materials, fractures, ground water, Hydrogeology 21, mapping, massachusetts, Middlesex County Massachusetts, movement, Nashoba terrane, patterns, preferential flow, recharge, reservoir properties, substrates, United States}, isbn = {00963941}, author = {Alex K Manda and Stephen B Mabee and Hubbs, S. A.} } @proceedings {292, title = {Foraminifera ecology on the continental shelf, Merrimack Embayment, Gulf of Maine, New England}, volume = {42}, year = {2010}, note = {Accession Number: 2010-092674; Conference Name: Geological Society of America, Northeastern Section, 45th annual meeting Geological Society of America, Southeastern Section, 59th annual meeting; Baltimore, MD, United States; Conference Date: 20100314; Language: English; Coordinates: N423000N430000W0703000W0705000; Coden: GAAPBC; Collation: 1; Collation: 82; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201049; Monograph Title: Geological Society of America, Northeastern Section, 45th annual meeting; Geological Society of America, Southeastern Section, 59th annual meeting; joint meeting, abstracts volume; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2010/03/01/}, pages = {82 - 82}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {During the late Pleistocene the Merrimack River paleodelta formed as post-glacial rebound produced a local low stand in sea level. Drowned as sea level rose, the paleodelta is now being reworked by a variety of processes. This study uses benthic foraminifera as a biotic and environmental proxy to study the sand and gravel resources of the paleodelta. Nineteen sediment samples were collected from the paleodelta along two east-west transects east of the Merrimack River. From these samples nearly 6000 benthic foraminifera, representing 62 species, were collected and identified. Although dissolution compromised the preservation of calcite tests within six samples, the resulting data is robust and allows for numerous conclusions to be drawn. Specifically, benthic foraminifera become more common distally and specific species inhabit specific areas of the paleodelta. Distribution patterns of some species have changed significantly since the late 1940s, with some species migrating landward, others, seaward. Distributions of some taxa differ significantly between the two transects, both in the present day and from the past. These differences may point to the influence of, and changes in, the Merrimack River outflow upon water column nutrient delivery, productivity and food availability over the past 60 years. Species diversity and evenness peak at the delta break, coincident with low species dominance at 50 meters water depth. Q-mode cluster analyses show three distinct assemblages, "shallow" (< or =30 meters water depth), "deep" (> or =40 meters), and "delta edge" (50 meters). There is no apparent correlation between foraminiferal distributions and deltaic bedforms, and in turn, sediment type. This implies that foraminiferal distributions are controlled by other environmental variables such as food. In summary, benthic foraminiferal assemblage analyses complement geophysical techniques. Benthic foraminifera can also help assess the marine impact of, e.g., mining sediment resources, watershed development, pollution, rising sea level, and increased fishing.}, keywords = {$\#$StaffPubs, applications, Atlantic Ocean, benthic taxa, Cenozoic, cluster analysis, deltaic environment, Economic geology, geology of nonmetal deposits 28A, Foraminifera, gravel deposits, Gulf of Maine, Invertebrata, Maine, marine environment, marine sediments, massachusetts, Merrimack River valley, microfossils, mining, North Atlantic, paleoecology, paleogeography, Pleistocene, Protista, Quaternary, Quaternary geology 24, sand deposits, sea-level changes, sediments, shelf environment, species diversity, statistical analysis, United States, upper Pleistocene}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2010NE/finalprogram/abstract_170108.htm}, author = {Steven A Nathan and Leckie, R. Mark and Stephen B Mabee} } @proceedings {294, title = {Fracture characterization of crystalline bedrock for groundwater investigations; an example from the Marlborough Quadrangle, Massachusetts}, volume = {36}, year = {2004}, note = {Accession Number: 2005-077195; Conference Name: Geological Society of America, Northeastern Section, 38th annual meeting; Geological Society of America, Southeastern Section, 53rd annual meeting; Washington, DC, United States; Conference Date: 20040325; Language: English; Coordinates: N421800N421800W0713000W0713000; Coden: GAAPBC; Collation: 1; Collation: 113; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200524; Monograph Title: Geological Society of America, Northeastern Section, 38th annual meeting; Geological Society of America, Southeastern Section, 53rd annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2004/03/01/}, pages = {113 - 113}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Integration of a wide array of structural data with well-field hydrologic testing is increasingly recognized as a critical step in understanding groundwater flow behavior and recharge in crystalline bedrock aquifers (Lyford et al., 2003, Walsh and Lyford, 2002). The Marlborough Quadrangle, about 40 km west of Boston, was selected as a test case of how a state geological survey can most effectively and efficiently collect and present such data in order to better constrain conceptual models of groundwater flow in general and to be of maximum use for hydrologists and consultants working on specific local problems. In this study, 3200 structural measurements were taken by a two-person team over a nine-week period at 68 stations distributed throughout the quadrangle and keyed into a GIS database. Specialized data sheets allowed efficient recording and digitization of orientations, lengths, spacing and mineralization, and separation of various classes of joints and veins. Fault data also included motion direction and sense. Summary maps in GIS format include standard geologic map bases overlain by typical rose diagrams and stereograms and maps such as fracture domains and trajectories, sheeting distribution, foliation trajectories, bedrock elevations, generalized piezometric surface configuration, and overburden type and thickness with separations into permeability class. Geology of the quadrangle can be separated into three zones: (a) north of the Assabet River Fault (ARF), (b) the area between the ARF and 1.5 km-wide Bloody Bluff Fault Zone (BBFZ), and (c) south of the BBFZ. Generalized foliations in the zones are: (a) 215, 50N, (b) 240, 65N, and (c) 270, 45N. Two pervasive, steeply-dipping (>60 degrees ) fracture sets occur throughout the quadrangle: an older 150 degrees set that includes sulfide-bearing veins and fracture surfaces along the ARF and a 015 degrees set of largely unmineralized common joints, macrojoints (>3 m length) and joint zones (av. 1.2 m width). Sheeting and unloading joints are generally coincident with shallow dipping foliation in (c) but cross-cut foliation in (a) and (b). We believe this approach will provide hydrologists and consultants with basic framework data that will expedite and improve the planning of subsurface investigations, construction activities and groundwater exploration.}, keywords = {$\#$StaffPubs, aquifers, Assabet River Fault, BEDROCK, characterization, controls, crystalline rocks, fractured materials, fractures, geographic information systems, ground water, Hydrogeology 21, hydrology, information systems, joints, Marlborough Quadrangle, massachusetts, Middlesex County Massachusetts, permeability, preferential flow, recharge, style, testing, theoretical models, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2004NE/finalprogram/abstract_70321.htm}, author = {Scott A Salamoff and Stephen B Mabee and Joseph P Kopera and Donald U Wise} } @proceedings {296, title = {Fracture patterns across two terrane boundaries in eastern Massachusetts; implications for regional groundwater flow and recharge}, volume = {38}, year = {2006}, note = {Accession Number: 2010-054322; Conference Name: Geological Society of America, 2006 annual meeting; Philadelphia, PA, United States; Conference Date: 20061022; Language: English; Coden: GAAPBC; Collation: 1; Collation: 434; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201030; Monograph Title: Geological Society of America, 2006 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2006/10/01/}, pages = {434 - 434}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {The integration of structural data and field-based observations is becoming increasingly critical in understanding groundwater flow behavior and recharge potential. Over the past 3 years, the Office of the Massachusetts State Geologist (OMSG) has collected 8225 fracture measurements from 187 stations across 3 adjacent quadrangles as part of its bedrock geologic mapping program. These data provide a north-south transect across the Nashoba Terrane and its boundaries with the Merrimack Belt and Avalon Terranes in eastern Massachusetts. Areas with similar fracture patterns can be grouped into "hydrostructural domains" with distinct hydrogeologic properties. Within the above transect, hydrostructural domains were observed to closely correspond with bedrock lithology and ductile structure, and therefore, tectonic history. Such domains are commonly bounded by faults or intrusive contacts. Common features observed across all domains include a NE-striking regional foliation with corresponding NW-striking, steeply-dipping cross-joints. Strongly layered metasedimentary and metavolcanic rocks of the Merrimack Belt and the Marlborough Formation in the Nashoba Terrane tend to have the most pervasive and closely-spaced foliation-parallel fractures (FPF). Foliation intensity and FPF generally increases towards shear zones and regional fault systems, especially within granites and gneisses. The moderate to steeply dipping, well-developed FPF in these rocks provides a potentially excellent conduit for vertical recharge and a strong NE-trending regional anistropy that may control groundwater flow. Granitoidal rocks have very consistent NS-EW orthogonal networks of vertical fractures and subhorizontal sheeting joints, providing excellent potential for vertical recharge and near-surface lateral flow. Features such as small brittle faults, fracture zones, fold axes, and fracture sets distinct to each domain may dominate local groundwater flow and recharge. Abstract 116563 modified by 72.70.224.253 on 7-12-2006}, keywords = {$\#$StaffPubs, Avalon Zone, BEDROCK, eastern Massachusetts, faults, foliation, fractures, ground water, Hydrogeology 21, joints, massachusetts, Merrimack Belt, movement, observations, patterns, properties, recharge, shear zones, style, terranes, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2006AM/finalprogram/abstract_116563.htm}, author = {Stephen B Mabee and Joseph P Kopera} } @proceedings {300, title = {Identifying and examining potential geothermal resources in non-traditional regions, examples from the northeastern U.S.}, volume = {43}, year = {2011}, note = {Accession Number: 2012-083486; Conference Name: Geological Society of America, 2011 annual meeting; Minneapolis, MN, United States; Conference Date: 20111009; Language: English; Coden: GAAPBC; Collation: 1; Collation: 40; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201244; Monograph Title: Geological Society of America, 2011 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2011/10/01/}, pages = {40 - 40}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {The search for geothermal resources is rapidly expanding into tectonic regions that have not been previously considered to be suitable for exploitation. Many of these regions, such as the northeastern U.S., have never been the site of extensive geophysical investigations and have few deep borehole temperature measurements. Nevertheless, large portions of the northeastern U.S. are underlain by granitic bedrock that may be a productive energy source by applying enhanced geothermal technologies. In the absence of traditional reconnaissance data, we utilize field studies and sampling together with geochemical analysis to develop models of geothermal resources that can be tested against data from deep boreholes. Heat production is calculated from the measured density of the samples, the concentrations of K, U, and Th from whole-rock geochemical analysis via X-ray fluorescence, and established radiogenic heat production values. Models for a particular area can then be generated by calculating depth-specific temperatures using heat production, measured thermal conductivity for each sample, and assumptions related to local stratigraphy and regional heat flow. Mapping and structural extrapolation are used to establish the subsurface characteristics at a study site and are combined with the thermal and chemical characteristics of contact rocks and overburden materials. Two examples of the application of this technique are the Fall River granite at the margin of the Narragansett Basin in southeastern Massachusetts and the Andover Granite in northeastern Massachusetts. Thermal models of the Fall River Pluton indicate average temperatures of 71 degrees C at depths of 4 km and 97 degrees C at 6 km. Average temperatures increase to 107 degrees C and 132 degrees C, respectively, when a 2 km thick sediment package is modeled overlying the granite. The Andover Granite, which is not associated with a sedimentary basin and is in a more structurally complex configuration, yields an average temperature of 74 degrees C at a depth of 4 km and 101 degrees C at 6 km. While this approach to modeling temperature-depth profiles requires some regional heat flow assumptions, the application of mapping and structural analysis with geochemistry and thermal conductivity studies can be an important reconnaissance tool for identifying non-traditional geothermal resources.}, keywords = {$\#$StaffPubs, Andover Granite, Eastern U.S., Economic geology, geology of energy sources 29A, exploitation, exploration, Fall River Granite, field studies, geochemistry, geothermal energy, identification, mapping, massachusetts, models, Northeastern U.S., overburden, resources, sampling, southeastern Massachusetts, spectra, structural analysis, technology, temperature, United States, whole rock, X-ray fluorescence spectra}, isbn = {00167592}, author = {Koteas, G. Christopher and John Michael Rhodes and Stephen B Mabee and Goodhue, Nathaniel and Adams, Sharon A.} } @proceedings {301, title = {Implications for non-traditional geothermal resources in southern New England; variability in heat potential based on thermal conductivity and geochemistry studies}, volume = {44}, year = {2012}, note = {Accession Number: 2012-090079; Conference Name: Geological Society of America, Northeastern Section, 47th annual meeting; Hartford, CT, United States; Conference Date: 20120318; Language: English; Coordinates: N420000N473000W0670000W0733000; Coden: GAAPBC; Collation: 2; Collation: 76-77; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201247; Monograph Title: Geological Society of America, Northeastern Section, 47th annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2012/02/01/}, pages = {76 - 77}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Estimating geothermal potential in southern New England in the absence of borehole heat flow data or geophysical studies has led to a focus on models based on thermal conductivity, geochemistry, and density-based heat production models. Preliminary estimates of geothermal potential generally match borehole-based heat flow data from similar tectonic environments. Nevertheless, microstructural and compositional heterogeneity with depth remain largely unconstrained. The extrapolation of regional structures based on detailed field mapping has helped to improve structural projections adjacent to major basins. However, an additional source of error in models of heat potential-with-depth are thermal conductivity estimates of igneous and meta-igneous rocks throughout Massachusetts (MA) and Connecticut (CT). Over three hundred granitoid localities in MA and CT have been analyzed to date. The southern New England region can be simplified into four major litho-tectonic zones: the Taconic-Berkshire Zone of western MA and northwestern CT, The Bronson Hill Zone associated with the CT River valley, the Nashoba Zone of central MA and eastern CT, and the Milford-Dedham Zone of eastern MA and eastern CT. Granitic rocks adjacent to the CT River valley and the Narragansett Basin vary considerably in thermal conductivity. Granites adjacent to the Narragansett Basin vary from 2.9 to 3.7 W/m * K. Average thermal conductivity values, combined with modeled heat production values, produce temperatures at 3 km depth along the Narragansett Basin that approach 85-115 degrees C. Values of meta-igneous rocks from the margin of the CT River valley in MA and CT vary more considerably in thermal conductivity, from 1.8 to 3.9W/m * K. Modeled heat potentials at 3 km depths along the eastern margin of the CT River valley vary between 74-122 degrees C and appear to be largely related to compositional variation. However, local rock composition is also related to metamorphic grade and fabric development, suggesting that both fabric and composition are first order controls on thermal conductivity. Modeling based on these data set to date suggests that combining thermal conductivity, whole rock geochemistry data, and density measurements can produce accurate reconnaissance estimates of geothermal potential in southern New England.}, keywords = {$\#$StaffPubs, chemical composition, Connecticut, Economic geology, geology of energy sources 29A, energy sources, geothermal energy, geothermal exploration, granites, heat flow, igneous rocks, massachusetts, models, New England, plutonic rocks, thermal conductivity, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2012NE/finalprogram/abstract_200837.htm}, author = {Koteas, G. Christopher and John Michael Rhodes and Stephen B Mabee and Ryan, Amy and Schmidt, Joe and League, Corey and Goodhue, Nathaniel and Adams, Sharon A. and Gagnon, Teresa K. and Thomas, Margaret A.} } @proceedings {306, title = {Landslides from Tropical Storm Irene in the Deerfield Watershed, western Massachusetts}, volume = {45}, year = {2013}, note = {Accession Number: 2014-027064; Conference Name: Geological Society of America, Northeastern Section, 48th annual meeting; Bretton Woods, NH, United States; Conference Date: 20130318; Language: English; Coordinates: N411500N425500W0695500W0733000; Coden: GAAPBC; Collation: 2; Collation: 83-84; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201417; Monograph Title: Geological Society of America, Northeastern Section, 48th annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2013/02/01/}, pages = {83 - 84}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Four landslides (3 translational debris flows and 1 rotational slide) occurred along the Cold River within the Deerfield River watershed (1440 km (super 2) ) in northwestern Massachusetts closing a six mile section of Route 2, a major east-west transportation corridor, for 3.5 months. These are among the largest landslides to occur in Massachusetts since 1901. Tropical storm Irene dropped 180-250+ mm of rain in a 12 to 15-hour period on the Deerfield watershed preceded by 130-180 mm of rain in the 1.5 weeks leading up to Irene. Soils were saturated, an unusual condition for the month of August, and probably contributed significantly to slope failure. The three translational slides occurred at approximately 10 am on August 28, 2011, involved 765 m of slope at an average angle of 28-33 degrees , covered an area of 1.2 ha and moved about 7645 m (super 3) of material. Bedrock sheeting joints oriented parallel to the slope (284 degrees , 38-40 degrees dip) provided the slip surface upon which the overlying 0.6-1.2 m of colluvium and glacial till slid. The rotational slide occurred along an unarmored section of the Cold River. The slip surface was a 4-8 foot thick layer of laminated lake-bottom sediments overlain by 12-19 feet of stream terrace and debris flow/alluvial fan deposits transported by Trout Brook, a smaller tributary to the Cold River. This section of Route 2 has experienced chronic failures beginning with the storm of 1938. The cost to repair this six-mile section of Route 2 was $22.5 million. Flooding within the Deerfield watershed was extreme with a record-breaking peak flow of 3100 m (super 3) /s (72 year record) where the Deerfield enters the Connecticut River. Approximately 1.6x10 (super 8) m (super 3) of water was discharged through the Deerfield during the event indicating that approximately 112 mm of Irene{\textquoteright}s rainfall was converted directly to runoff, a yield of between 45\% and 62\%. Clays and silts locked in storage in the glacial sediments within the watershed were mobilized resulting in record-breaking sediment loads 5-times greater than predicted from the pre-existing rating curve. Approximately 1.2 Mtonnes of sediment was discharged by the river during Irene. Where the Deerfield and Connecticut Rivers meet, the Deerfield watershed area is one tenth the size of the Connecticut River, yet the Deerfield produced as much as 40\% of the total sediment observed on the lower Connecticut.}, keywords = {$\#$Landslides, $\#$NaturalHazards, $\#$StaffPubs, Cold River, Deerfield Watershed, effects, Environmental geology, geologic hazards, Irene, landslide, landslides, mass movements, massachusetts, natural hazards, storms, Tropical Storm Irene, United States, western Massachusetts}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2013NE/webprogram/Paper215998.html}, author = {Stephen B Mabee and Jonathan D Woodruff and Fellows, John and Joseph P Kopera} } @proceedings {267, title = {A new way of looking at, and mapping, bedrock; the hydrostructural domain map of the Ayer Quadrangle, northeastern Massachusetts}, volume = {38}, year = {2006}, note = {Accession Number: 2008-100620; Conference Name: Geological Society of America, 2006 annual meeting; Philadelphia, PA, United States; Conference Date: 20061022; Language: English; Coden: GAAPBC; Collation: 1; Collation: 166; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200816; Monograph Title: Geological Society of America, 2006 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2006/10/01/}, pages = {166 - 166}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {While traditional bedrock geologic maps contain valuable information, they commonly lack data on fractures and physical properties of the rock. The increased need for better understanding of groundwater behavior in bedrock aquifers has made this data critical. Hydrostructural domain maps reclassify bedrock based on fracture systems and physical properties that may have implications for groundwater flow and recharge. These maps are constructed from detailed field observations and measurements of 2000-3000 fractures from 60-70 stations across a 7.5{\textquoteright} quadrangle. Hydrostructural domains are displayed on the map as traditional lithologic units would be, with detailed descriptions and photos of the fracture characteristics and physical properties of each hydrostructural "unit". In the Ayer Quadrangle, such domains closely correspond with bedrock lithology and ductile structural history. Steeply dipping metasedimentary rocks of the Merrimack Belt have pervasive, closely spaced, throughgoing fractures developed parallel to foliation, and therefore provide an excellent potential for vertical recharge. Where these rocks are intensely cut by a strong subhorizontal cleavage, a parallel fracture set dominates providing an opportunity for lateral flow. Massive granites generally have a well developed, widely-spaced orthogonal network of fracture zones which may provide excellent local recharge. High-grade gneisses of the Nashoba Terrane have poorly developed fracture sets except near regional shear zones, where foliation parallel fractures and cross-joints may provide good vertical recharge and provide a strong northeast trending flow anisotropy. These maps are intended to provide a regional-scale information to assist in site-specific groundwater investigations. We believe that such maps are an example of how new types of geologic maps can, and must, be developed to address changing societal needs.}, keywords = {$\#$StaffPubs, aquifers, Ayer Quadrangle, BEDROCK, faults, foliation, fracture zones, fractures, ground water, Hydrogeology 21, joints, mapping, massachusetts, measurement, Merrimack Belt, movement, Nashoba terrane, northeastern Massachusetts, observations, orientation, physical properties, recharge, shear zones, Structural geology 16, style, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2006AM/finalprogram/abstract_116561.htm}, author = {Joseph P Kopera and Stephen B Mabee} } @proceedings {316, title = {A structural framework for the Nashoba Terrane in eastern Massachusetts.}, volume = {45}, year = {2013}, pages = {107}, abstract = {The exhumation and tectonic significance of the migmatitic Cambro-Ordovician arc-complex of the Nashoba terrane, located between lower-grade rocks of the Avalon and Merrimack terranes in Massachusetts, has historically presented an enigma, in part, due to a lack of detailed analysis of internal structure. We propose a new terrane-scale structural model based on nearly a decade of detailed geologic mapping to provide a framework for future study. A subvertical NE-striking composite fabric (S (sub n/n-1) ) forms the dominant structural grain of the terrane. S (sub n) commonly deforms an older layer-parallel foliation (S (sub n-1) ) about meter- to kilometer-scale, upright to steeply inclined, NE- and SW-plunging, tight disharmonic folds (F (sub n) ). In the Nashoba Formation migmatites, S (sub n) commonly transposes a subhorizontal S (sub n-1) enveloping surface into spaced meter-scale subvertical shear bands that are absent in the dominantly metavolcanic Marlborough Formation. Fold axis-parallel mineral stretching and intersection lineations (L (sub n) ) are locally overprinted on S (sub n) by subhorizontal peak metamorphic to retrograde mineral lineations (L (sub n/n+1) ). Ambiguous D (sub n) kinematics in the NE transition SW along strike to top-to-NW normal fold vergence and drag along steep north-dipping S (sub n) axial planes and S (sub n) - S (sub n+1) shear bands. Later strain (S (sub n+1) - S (sub n+2) ) appears to be progressively partitioned at lower grade to pre-existing S (sub n) shear bands and discrete internal and terrane bounding fault zones which display early high-grade top-to-SE dextral or sinistral motion (S (sub n-1) - S (sub n) ) broadly overprinted by lower-grade top-NW movement (S (sub n+1) ). We propose a tentative tectonic history incorporating sparse existing geochronologic and petrologic studies: Top SW D (sub n-1) motion coeval with approximately 425 Ma sill-grade metamorphism and possible accretion. D (sub n) initiating syn approximately 395 Ma peak metamorphism with migmatite generation along S (sub n) and progressive bulk fabric development largely complete by the intrusion of the relatively undeformed approximately 349 Ma Indian Head Hill granite. Exhumation can be accommodated by well-documented syn-to-post D (sub n) regional sinistral motion combined with progressively lower grade top-NW extension along discrete structures continuing through deposition and deformation of presumed Carboniferous basin sediments along the terrane boundary.}, keywords = {$\#$StaffPubs, Cambrian, eastern Massachusetts, exhumation, fabric, fault zones, faults, foliation, massachusetts, metamorphism, Nashoba terrane, Ordovician, Paleozoic, Structural geology, tectonics, United States}, issn = {00167592}, url = {https://gsa.confex.com/gsa/2013NE/webprogram/Paper215867.html}, author = {Joseph P Kopera and Matthew A Massey} } @proceedings {269, title = {An update of geologic mapping in Massachusetts}, volume = {36}, year = {2004}, note = {Accession Number: 2005-048993; Conference Name: Geological Society of America, Northeastern Section, 38th annual meeting; Geological Society of America, Southeastern Section, 53rd annual meeting; Washington, DC, United States; Conference Date: 20040325; Language: English; Coden: GAAPBC; Collation: 1; Collation: 58; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200518; Monograph Title: Geological Society of America, Northeastern Section, 38th annual meeting; Geological Society of America, Southeastern Section, 53rd annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2004/03/01/}, pages = {58 - 58}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Despite the state{\textquoteright}s relatively high population density and decades of detailed study of the bedrock geology, only about half of the 7.5{\textquoteright} quadrangles in Massachusetts have been published as GQ series geologic maps. As the state{\textquoteright}s population continues to grow, the availability of basic geologic data becomes increasingly crucial for informed land-use and water-management decision making. Much of the published 1:24000 scale geologic mapping predates recent advances in the understanding of regional tectonics, and needs to be updated. The Office of the State Geologist has begun a geologic mapping program in Massachusetts to address these needs. Two mapping projects were conducted through the STATEMAP component of the National Cooperative Geologic Mapping program in 2003. These projects focused on 7.5{\textquoteright} quadrangles along the I-495 corridor, which is experiencing extensive population growth and development. The first project involved conversion of published 1:24,000-scale surficial geology to digital form for 10 quadrangles in southeastern Massachusetts. A semi-automated process was developed for this project that easily converts published paper geologic maps into vectorized, georeferenced datalayers. The second project involved 1:24000-scale geologic mapping of the Marlborough quadrangle in east-central Massachusetts. Products include traditional maps of bedrock and surficial geology as well as two new prototype products: a fracture characterization map and a surficial materials map. These projects mark the first time in Massachusetts{\textquoteright} history that quadrangle-scale geologic data will be available in digital form to consultants and stakeholders, thus greatly expediting and improving the use and analysis of all geologic data. In addition, the inclusion of fracture characterization and surficial materials maps adds substantially to the value of traditional geologic map products. The new maps provide supplemental data on the hydrologic characteristics of the bedrock and the vertical stacking of surficial deposits that previously was unavailable. STATEMAP projects in 2004 will continue to focus along the I-495 corridor, and will involve revision and new mapping in the Wilmington, Reading, South Groveland, Lawrence, Hudson, and Oxford quadrangles.}, keywords = {$\#$StaffPubs, data, data acquisition, data processing, digital data, Geologic maps 14, mapping, massachusetts, National Cooperative Geologic Mapping Program, programs, publications, regional, review, STATEMAP, United States}, isbn = {00167592}, author = {Joseph P Kopera and Stephen B Mabee and Scott A Salamoff and Hildreth, Carol} } @article {35, title = {Geologic Fieldtrip Guidebook database for North America}, publisher = {American Geolosciences Institute}, keywords = {educational resources, GEOLOGY, guidebooks, massachusetts}, url = {http://guide.georef.org/dbtw-wpd/guidens.htm} } @article {278, title = {Correlation of lineaments to ground water inflows in a bedrock tunnel}, journal = {Ground Water}, volume = {40}, year = {2002}, note = {Accession Number: 2002-016666; Language: English; Coordinates: N420800N422800W0714300W0715300; Coden: GRWAAP; Collation: 7; Publication Types: Serial; Updated Code: 200206; Illustration(s): illus. incl. 6 tables, sketch map; Number of References: 38; Reviewed Item: Analytic}, month = {2002/02/01/}, pages = {37 - 43}, publisher = {National Ground Water Association : Urbana, IL, United States}, address = {United States}, abstract = {Lineaments derived from three image types (1:80,000 black and white, 1:58,000 color infrared, and 1:250,000 side-looking airborne radar) were compared to water-bearing features within a 9.6 km section of tunnel being constructed through foliated crystalline metamorphic bedrock in a glaciated region of eastern Massachusetts. Lineaments drawn by three observers during two independent trials (N = 9137) were reduced to three sets (one per image type) of coincident lineaments (N = 794). Thirty-five coincident lineaments crossed the tunnel. Nineteen discrete flow zones, each producing >= 19 L/min, were identified in the tunnel and used to quantify the reliability of lineament analysis as a method of predicting water-bearing features in glaciated metamorphic rocks. Thirteen (68\%) of the flow zones correlate with coincident lineaments, six zones correlate with more than one image type, and one zone correlates with all three image types. Overall, without additional corroborating evidence, it is difficult to interpret in advance which lineaments will result in a successful correlation with water-producing zones in the subsurface and which ones will not. Most of the observed flow (80\%) correlates with northwest-trending coincident lineaments; however, the majority of the flow (67\%) associated with these lineaments is produced from structures that strike to the north or northeast. In addition, only 15 of the 35 coincident lineaments correlate with the flow zones, indicating that 20 lineaments are not associated with any appreciable flow. Six flow zones are undetected by the lineament analysis.}, keywords = {$\#$StaffPubs, aquifers, BEDROCK, construction, eastern Massachusetts, Engineering geology 30, Framingham Quadrangle, ground water, hydrodynamics, Hydrogeology 21, lineaments, massachusetts, Middlesex County Massachusetts, Natick Quadrangle, tectonics, tunnels, United States}, isbn = {0017467X}, url = {http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6584.2002.tb02489.x/abstract}, author = {Stephen B Mabee and Curry, Patrick J. and Hardcastle, Kenneth C.} } @article {264, title = {A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain}, journal = {Hydrogeology Journal}, volume = {18}, year = {2010}, note = {Accession Number: 2011-042136; Language: English; Coordinates: N420000N425000W0695500W0714500; Collation: 16; Publication Types: Serial; Updated Code: 201124; Illustration(s): illus. incl. 3 tables, geol. sketch map; Number of References: 58; Reviewed Item: Analytic}, month = {2010/12/01/}, pages = {1839 - 1854}, publisher = {Springer : Berlin - Heidelberg, Germany}, address = {Federal Republic of Germany}, abstract = {Groundwater movement and availability in crystalline and metamorphosed rocks is dominated by the secondary porosity generated through fracturing. The distributions of fractures and fracture zones determine permeable pathways and the productivity of these rocks. Controls on how these distributions vary with depth in the shallow subsurface (<300 m) and their resulting influence on groundwater flow is not well understood. The results of a subsurface study in the Nashoba and Avalon terranes of eastern Massachusetts (USA), which is a region experiencing expanded use of the fractured bedrock as a potable-supply aquifer, are presented. The study logged the distribution of fractures in 17 boreholes, identified flowing fractures, and hydraulically characterized the rock mass intersecting the boreholes. Of all fractures encountered, 2.5\% are hydraulically active. Boreholes show decreasing fracture frequency up to 300 m depth, with hydraulically active fractures showing a similar trend; this restricts topographically driven flow. Borehole temperature profiles corroborate this, with minimal hydrologically altered flow observed in the profiles below 100 m. Results from this study suggest that active flow systems in these geologic settings are shallow and that fracture permeability outside of the influence of large-scale structures will follow a decreasing trend with depth. Copyright 2010 Springer-Verlag}, keywords = {$\#$StaffPubs, aquifers, boreholes, crystalline rocks, eastern Massachusetts, fractured materials, fractures, ground water, hydraulic conductivity, Hydrogeology 21, massachusetts, Nashoba terrane, permeability, porosity, preferential flow, shallow-water environment, substrates, United States}, isbn = {1431217414350157}, url = {http://link.springer.com/article/10.1007\%2Fs10040-010-0640-y}, author = {David F Boutt and Diggins, Patrick and Stephen B Mabee} } @article {315, title = {Implications of anthropogenic river stage fluctuations on mass transport in a valley fill aquifer}, journal = {Water Resources Research}, volume = {45}, year = {2009}, month = {2009/01/01/}, pages = {@CitationW04427 - @CitationW04427}, publisher = {American Geophysical Union : Washington, DC, United States}, abstract = {In humid regions a strong coupling between surface water features and groundwater systems may exist. In these environments the exchange of water and solute depends primarily on the hydraulic gradient between the reservoirs. We hypothesize that daily changes in river stage associated with anthropogenic water releases (such as those from a hydroelectric dam) cause anomalous mixing in the near-stream environment by creating large hydraulic head gradients between the stream and adjacent aquifer. We present field observations of hydraulic gradient reversals in a shallow aquifer. Important physical processes observed in the field are explicitly reproduced in a physically based two-dimensional numerical model of groundwater flow coupled to a simplistic surface water boundary condition. Mass transport simulations of a conservative solute introduced into the surface water are performed and examined relative to a stream condition without stage fluctuations. Simulations of 20 d for both fluctuating river stage and fixed high river stage show that more mass is introduced into the aquifer from the stream in the oscillating case even though the net water flux is zero. Enhanced transport by mechanical dispersion leads to mass being driven away from the hydraulic zone of influence of the river. The modification of local hydraulic gradients is likely to be important for understanding dissolved mass transport in near-stream aquifer environments and can influence exchange zone processes under conditions of high-frequency stream stage changes.}, keywords = {$\#$Hydro, $\#$WaterResources, aquifers, boundary conditions, Charlemont, Deerfield River basin, fluctuations, fluvial features, Franklin County Massachusetts, ground water, human activity, Hydrogeology 21, hydrology, massachusetts, numerical models, preferential flow, rivers, shallow aquifers, streams, surface water, transport, two-dimensional models, United States, valleys}, isbn = {0043139719447973}, url = {http://onlinelibrary.wiley.com/doi/10.1029/2007WR006526/full}, author = {David F Boutt and Brandon J Fleming} } @article {305, title = {Influence of rock fabric on fracture attribute distribution and implications for groundwater flow in the Nashoba Terrane, eastern Massachusetts}, journal = {Journal of Structural Geology}, volume = {30}, year = {2008}, note = {Accession Number: 2009-050694; Language: English; Coden: JSGEDY; Collation: 14; Publication Types: Serial; Updated Code: 200928; Reviewed Item: Analytic}, month = {2008/04/01/}, pages = {464 - 477}, publisher = {Elsevier : Oxford, International}, address = {International}, abstract = {Attributes (i.e. trace-length, spacing, termination and orientation) of joints and foliation-parallel fractures (FPFs) are used to assess the influence of lithology and fabric on fracture type and distribution in metamorphic and igneous rocks of the Nashoba terrane, Massachusetts. Orientations of NE-SW and NW-SE trending joints are consistent throughout the region, whereas FPFs are sub-parallel to the axis of the terrane. Joint spacing generally decreases to the northeast across the terrane reflecting lithologic changes from metamorphic to igneous rock types. Although trace-length and spacing frequency distributions of both joints and FPFs are best described by lognormal functions, FPFs possess narrower fracture spacing than joints. Median fracture trace-lengths of all FPFs are comparable to those of all steep joints, but the median fracture spacing is half that of all steep joints. Trace-lengths of FPFs vary as a function of the degree of development of foliation. Fracture attributes and groundwater flow models suggest that FPFs may significantly increase fracture connectivity and potential for groundwater recharge. FPFs may account for as much as 30\% of flow in fracture networks suggesting that in addition to joints, FPFs play a significant role in groundwater hydraulics that may include imparting flow anisotropy on the groundwater system.}, keywords = {$\#$StaffPubs, foliation, fractures, ground water, Hydrogeology 21, joints, massachusetts, movement, Nashoba terrane, preferred orientation, statistical distribution, structural analysis, Structural geology, style, terranes, United States}, isbn = {01918141}, url = {http://www.sciencedirect.com/science/article/pii/S0191814107002362}, author = {Alex K Manda and Stephen B Mabee and Donald U Wise} } @article {266, title = {A method of estimating bulk potential permeability in fractured-rock aquifers using field-derived fracture data and type curves}, journal = {Hydrogeology Journal}, volume = {21}, year = {2013}, note = {Accession Number: 2013-055373; Language: English; Coordinates: N421500N424500W0704500W0714500; Collation: 13; Publication Types: Serial; Updated Code: 201334; Illustration(s): illus. incl. 4 tables, geol. sketch maps; Number of References: 41; Reviewed Item: Analytic}, month = {2013/03/01/}, pages = {357 - 369}, publisher = {Springer : Berlin - Heidelberg, Germany}, address = {Federal Republic of Germany}, abstract = {A method is devised for estimating the potential permeability of fracture networks from attributes of fractures observed in outcrop. The technique, which is intended as a complement to traditional approaches, is based on type curves that represent various combinations of fracture lengths, fracture orientations and proportions (i.e., intensities) of fractures that participate in flow. Numerical models are used to derive the type curves. To account for variations in fracture aperture, a permeability ratio (R) defined as the permeability of a fracture network in a domain divided by the permeability of a single fracture with identical fracture apertures, is used as a dependent variable to derive the type curves. The technique works by determining the point on the type curve that represents the fracture characteristics collected in the field. To test the performance of the technique, permeabilities that were derived from fractured-rock aquifers of eastern Massachusetts (USA) are compared to permeabilities predicted by the technique. Results indicate that permeabilities estimated from type curves are within an order of magnitude of permeabilities derived from field tests. First-order estimates of fracture-network permeability can, therefore, be easily and quickly acquired with this technique before more robust and expensive methods are utilized in the field. Copyright 2012 Springer-Verlag Berlin Heidelberg}, keywords = {$\#$StaffPubs, aquifers, boundary conditions, eastern Massachusetts, fractured materials, fractures, ground water, Hydrogeology 21, massachusetts, Nashoba terrane, naturally fractured reservoirs, numerical models, permeability, prediction, pump tests, simulation, two-dimensional models, United States}, isbn = {1431217414350157}, url = {http://link.springer.com/article/10.1007\%2Fs10040-012-0919-2}, author = {Alex K Manda and Stephen B Mabee and David F Boutt and Cooke, Michele L.} } @Map {28, title = {Bedrock Geologic Map of Massachusetts}, year = {1983}, publisher = {United States Geological Survey}, abstract = {

(Zen et al., 1983) The 1:250,000 scale Bedrock Geologic Map of Massachusetts, published by the USGS in 1983, shows the distribution of the different rock units, faults, and other features that make up the bedrock of Massachusetts. It was compiled from published 1:24,000-scale maps., unpublished data, and field reconnaissance by the authors. Many areas of the state, however, have yet to be mapped thoroughly at 1:24,000 scale. A paper version can be ordered from the USGS Store (http://store.usgs.gov/) by searching for Product Number: 32370 or by clicking the links below. A two-volume text, The Bedrock Geology of Massachusetts, published in 1991, accompanies the map. The publication is catalogued as U.S. Geological Survey Professional Paper 1366 A-D (western Mass.) and 1366 E-J (eastern Mass.)

A variety of ways to download the map and text are listed in "Other Links" below.

}, keywords = {$\#$MassGeology, $\#$MassGeologyMap, $\#$StateGeologicMap, bedrock geology, eastern MA, GEOLOGIC MAP, GEOLOGY, map, massachusetts, western MA}, issn = {978-0-607-82552-7}, url = {http://ngmdb.usgs.gov/Prodesc/proddesc_16357.htm}, author = {Zen, E-an and Goldsmith, Richard and Ratcliffe, Nicholas M and Robinson, P and Stanley, Rolfe S and Hatch, Norman L and Shride, Andrew F and Weed, Elaine G A and Wones, David R} } @techreport {30, title = {Preliminary compilation of the bedrock geology of the land area of the Boston 2 degree sheet, Massachusetts, Connecticut, Rhode Island and New Hampshire}, number = {77-285}, year = {1977}, keywords = {$\#$MassGeology, $\#$MassGeologyMap, bedrock geology, Connecticut, eastern MA, GEOLOGY, map, massachusetts, New Hampshire, Rhode Island}, issn = {USGS OFR 77-285}, url = {http://pubs.er.usgs.gov/publication/ofr77285}, author = {Patrick J Barosh and Fahey, Richard J. and Pease, Maurice Henry, Jr.} } @online {44, title = {Federal Emergency Management Agency}, keywords = {earthquakes, flooding, landslides, massachusetts, natural hazards, New England}, url = {http://www.fema.gov/} } @online {50, title = {MA DCR - Office of Water Resources Rainfall Program}, publisher = {Massachusetts Department of Conservation and Recreation}, keywords = {data, massachusetts, rainfall, water, water resources, water supply}, url = {http://www.mass.gov/dcr/waterSupply/rainfall/index.htm} } @online {45, title = {MA DEP Drinking Water Information}, publisher = {Massachusetts Department of Environmental Protection}, keywords = {drinking water standards, massachusetts, water resources}, url = {http://www.mass.gov/dep/water/drinking.htm} } @online {47, title = {MA DEP - Water Resources of Massachusetts}, publisher = {Massachusetts Department of Environmental Protection}, keywords = {massachusetts, water resources}, url = {http://www.mass.gov/dep/water/waterres.htm} } @online {46, title = {MA DEP - Water, Wastewater, and Wetlands}, publisher = {Massachusetts Department of Environmental Protection}, keywords = {massachusetts, regulations, wastewater, water resources, wetlands}, url = {http://www.mass.gov/dep/water/index.htm} } @online {43, title = {MA Department of Environmental Management, Hazard Mitigation Program}, keywords = {massachusetts, natural hazards}, url = {http://www.state.ma.us/dem/programs/mitigate/index.htm} } @online {49, title = {Massachusetts Department of Conservation and Recreation}, keywords = {conservation, fishing, hunting, lakes, massachusetts, rivers, water resources, wetlands}, url = {http://www.mass.gov/dcr/index.htm} } @online {41, title = {National Earthquake Information Center, Earthquake Hazards Program}, keywords = {earthquakes, massachusetts, natural hazards}, url = {http://earthquake.usgs.gov/regional/states.php?regionID=21\®ion=Massachusetts} } @online {39, title = {Northeast States Emergency Consortium}, keywords = {coastal erosion, earthquakes, flooding, landslides, massachusetts, natural hazards}, url = {http://www.nesec.org/} } @online {149, title = {Recent USGS Publications for Massachusetts}, publisher = {USGS}, keywords = {$\#$MapsDataPublications, $\#$Misc, massachusetts, Massachusetts Geology, recent, reports, USGS, USGS publications}, url = {http://pubs.er.usgs.gov/$\#$search:advance/page=1/page_size=100/title=Massachusetts:0} } @online {138, title = {The U-Mass Geosciences publication series}, publisher = {U-Mass Amherst Dept. of Geosciences}, abstract = {A series of publications on Massachusetts geology based on Master{\textquoteright}s and PhD theses by U-Mass students from the 1960s-1990s. These are a valuable resource and the only geologic data for many areas. ***Note: This list needs to be re-built in the biblio database and have its own page off of MGS website{\textendash} it{\textquoteright}s no longer online.}, keywords = {$\#$BedrockMaps, $\#$LegacyPublications, $\#$MapsDataPublications, BEDROCK, GEOLOGY, maps, massachusetts, theses, U- Mass}, url = {http://www.geo.umass.edu/dept_info/contrib_series/list.html} } @online {42, title = {USGS Water Resources of Massachusetts and Rhode Island}, keywords = {massachusetts, natural hazards, Rhode Island, water resources}, url = {http://ma.water.usgs.gov/} }