@proceedings {275, title = {Connecticut geothermal map series; tools for exploration and development}, volume = {45}, year = {2013}, note = {Accession Number: 2014-021035; Conference Name: Geological Society of America, Northeastern Section, 48th annual meeting; Bretton Woods, NH, United States; Conference Date: 20130318; Language: English; Coden: GAAPBC; Collation: 1; Collation: 50; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201414; Monograph Title: Geological Society of America, Northeastern Section, 48th annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2013/02/01/}, pages = {50 - 50}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {The CT and MA Geological Surveys are collaborative partners in the National Geothermal Data Project funded by DOE through the Association of American State Geologists. The goal is to develop information to assist in locating State geothermal resources and provide data for better design of EGS systems in bedrock or unconsolidated sediments. The first 2 yrs of the investigation focused on data collection to explore the heat generating potential of CT bedrock and thermal conductivity (TC) properties of CT sediments. Rock chemistry, density, and TC were used to calculate heat production, heat flow, and thermal profiles at depth for >240 samples of 55 bedrock units. Heat production values (hpvs) were determined using concentrations of radiogenic (K, U, Th) and measured sample density. Heat flow values were determined using the calculated hpvs for the samples and hpvs of avg crustal material of New England (Rhodes, personal com., 2012). Thermal profiles at depths up to 6 km were generated using hpv, heat flow, and TC values for each sample. Results indicate that areas with highest heat flow values are in southeastern CT bedrock. 100 sediment samples were collected from 20 units targeted using the Surficial Materials and Quaternary Maps of CT. TC Measurements were made using a Decagon KD2-Pro Meter. Physical profiles of sediment (grain size, sand, silt, clay percent, bulk density, porosity) were created. Current efforts involve synthesis of calculated hpvs with direct heat flow measurements from existing geothermal installations to compile a geothermal resource map series. The series includes heat production, inferred heat flow, TC, and thermal profile maps for bedrock, and a TC map for sediments. These maps will assist geothermal contractors in site plan and system design. Heat production and inferred heat flow maps summarize model results for bedrock units. Thermal profile maps depict models of inferred temperature increases at depth, providing estimates for 3,4,5, and 6 km at specific locations, and provide depths needed to achieve desired temperature for either EGS or larger direct heat applications. TC mapping of sediments depict favorable areas for geothermal installations, and may be used in design of various ground source heat pump systems. All data and mapping is accessible via the National Geothermal Data System.}, keywords = {$\#$StaffPubs, BEDROCK, Connecticut, Economic geology, geology of energy sources 29A, geothermal energy, heat flow, information management, maps, technology, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2013NE/webprogram/Paper216450.html}, author = {Gagnon, Teresa K. and Thomas, Margaret A. and John Michael Rhodes and Stephen B Mabee} } @proceedings {303, title = {Improving seismic hazard assessment in New England through the use of surficial geologic maps and expert analysis}, volume = {45}, year = {2013}, note = {Accession Number: 2014-021037; Conference Name: Geological Society of America, Northeastern Section, 48th annual meeting; Bretton Woods, NH, United States; Conference Date: 20130318; Language: English; Coden: GAAPBC; Collation: 2; Collation: 50-51; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201414; Monograph Title: Geological Society of America, Northeastern Section, 48th annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2013/02/01/}, pages = {50 - 51}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {In New England, earthquakes pose a risk to the built environment. New England state geological surveys partnered with the Northeast States Emergency Consortium to integrate geologic information and GIS analysis for risk communication. Connecticut, Maine, Massachusetts, and Vermont employed surficial geologic maps, deglaciation history, glacial stratigraphy, and professional judgment to reclassify surficial geologic materials into one of the five National Earthquake Hazard Reduction Program (NEHRP) site classifications (A, B, C, D, and E). These new classifications were used in the HAZards U.S. Multi-Hazard (HAZUS-MH) risk assessment application as a substitute for site class value of "D," used in HAZUS-MH throughout New England as a default value. Coding of surficial geologic materials for the five NEHRP site classifications was then compared with classifications using the Wald methodology, a method using slope analysis as a proxy for shear-wave velocity estimates. Comparisons show that coding to site classes using the Wald methodology underestimates categories A (high-velocity shear-wave materials, least relative hazard) and E (lowest-velocity shear-wave materials, greatest relative hazard) when evaluated side by side with coding done with the aid of surficial geologic maps. Geologic maps provide insights into the location of buried low shear wave velocity materials not afforded by the Wald methodology. North of the glacial limit, derangement of drainage resulted in extensive ponding of meltwaters and the subsequent deposition of thick sequences of lacustrine mud. Inundation by the sea immediately following deglaciation in New England resulted in the deposition of spatially extensive and locally thick sequences of glacial marine mud. Surficial geologic maps better capture these circumstances when compared with the Wald methodology. Without the use of surficial geologic maps, significant areas of New England will be incorrectly classified as being more stable than actual site conditions would allow. By employing surficial geologic information, HAZUS-MH earthquake loss estimates are improved, providing local and regional emergency managers with more accurate information for locating and prioritizing.

}, keywords = {$\#$StaffPubs, earthquakes, Environmental geology, geologic hazards, maps, natural hazards, New England, risk assessment, seismic risk, seismic zoning, surficial geology, surficial geology maps, technology, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2013NE/webprogram/Paper214837.html}, author = {Becker, Laurence R. and Patriarco, Steven P. and Marvinney, Robert G. and Thomas, Margaret A. and Stephen B Mabee and Fratto, Edward S.} }