TY - Generic T1 - Implications for non-traditional geothermal resources in southern New England; variability in heat potential based on thermal conductivity and geochemistry studies T2 - Abstracts with Programs - Geological Society of America Y1 - 2012 A1 - Koteas, G. Christopher A1 - John Michael Rhodes A1 - Stephen B Mabee A1 - Ryan, Amy A1 - Schmidt, Joe A1 - League, Corey A1 - Goodhue, Nathaniel A1 - Adams, Sharon A. A1 - Gagnon, Teresa K. A1 - Thomas, Margaret A. KW - #StaffPubs KW - chemical composition KW - Connecticut KW - Economic geology, geology of energy sources 29A KW - energy sources KW - geothermal energy KW - geothermal exploration KW - granites KW - heat flow KW - igneous rocks KW - massachusetts KW - models KW - New England KW - plutonic rocks KW - thermal conductivity KW - United States AB - Estimating geothermal potential in southern New England in the absence of borehole heat flow data or geophysical studies has led to a focus on models based on thermal conductivity, geochemistry, and density-based heat production models. Preliminary estimates of geothermal potential generally match borehole-based heat flow data from similar tectonic environments. Nevertheless, microstructural and compositional heterogeneity with depth remain largely unconstrained. The extrapolation of regional structures based on detailed field mapping has helped to improve structural projections adjacent to major basins. However, an additional source of error in models of heat potential-with-depth are thermal conductivity estimates of igneous and meta-igneous rocks throughout Massachusetts (MA) and Connecticut (CT). Over three hundred granitoid localities in MA and CT have been analyzed to date. The southern New England region can be simplified into four major litho-tectonic zones: the Taconic-Berkshire Zone of western MA and northwestern CT, The Bronson Hill Zone associated with the CT River valley, the Nashoba Zone of central MA and eastern CT, and the Milford-Dedham Zone of eastern MA and eastern CT. Granitic rocks adjacent to the CT River valley and the Narragansett Basin vary considerably in thermal conductivity. Granites adjacent to the Narragansett Basin vary from 2.9 to 3.7 W/m * K. Average thermal conductivity values, combined with modeled heat production values, produce temperatures at 3 km depth along the Narragansett Basin that approach 85-115 degrees C. Values of meta-igneous rocks from the margin of the CT River valley in MA and CT vary more considerably in thermal conductivity, from 1.8 to 3.9W/m * K. Modeled heat potentials at 3 km depths along the eastern margin of the CT River valley vary between 74-122 degrees C and appear to be largely related to compositional variation. However, local rock composition is also related to metamorphic grade and fabric development, suggesting that both fabric and composition are first order controls on thermal conductivity. Modeling based on these data set to date suggests that combining thermal conductivity, whole rock geochemistry data, and density measurements can produce accurate reconnaissance estimates of geothermal potential in southern New England. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 44 SN - 00167592 UR - https://gsa.confex.com/gsa/2012NE/finalprogram/abstract_200837.htm IS - 22 N1 - Accession Number: 2012-090079; Conference Name: Geological Society of America, Northeastern Section, 47th annual meeting; Hartford, CT, United States; Conference Date: 20120318; Language: English; Coordinates: N420000N473000W0670000W0733000; Coden: GAAPBC; Collation: 2; Collation: 76-77; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201247; Monograph Title: Geological Society of America, Northeastern Section, 47th annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - DATA T1 - The Massachusetts Geothermal Data Project Y1 - 2013 A1 - John Michael Rhodes A1 - Koteas, G. Christopher A1 - Stephen B Mabee A1 - Ryan, Amy A1 - Isaacson, M. KW - #Geothermal KW - #MGSPubs KW - #Reports KW - #Subsurface KW - Andover Granite KW - aqueous geochemistry KW - Cape Anne granite KW - ECS KW - enhanced geothermal systems KW - Fitchburg granite KW - geothermal KW - granite geochemistry KW - granites KW - heat flow KW - hot dry rock KW - hot springs KW - thermal KW - thermal conductivity KW - thermal transmissivity KW - whole rock geochemistry KW - XRF AB - A series of geothermal maps and datasets for Massachusetts derived from data collected by the MGS for Massachusetts and Connecticut. These data include whole rock geochemistry, rock and soil thermal conductivity, hot spring aqueous geochemistry, and derivative thermal and heatflow modeling. The project includes multiple datasets and products which can be accessed here or via the National Geothermal Data System (http://search.geothermaldata.org/dataset?q=Massachusetts). These datasets and products are: Maps: Comprising MGS Miscellaneous Maps 13-01 through 13-08 Data: can be downloaded from the links below