TY - Generic T1 - Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 4, Occurrence and characterization of groundwater inflows T2 - Abstracts with Programs - Geological Society of America Y1 - 1999 A1 - Williams, Katherine W. A1 - Stephen B Mabee A1 - Hardcastle, Kenneth C. A1 - Curry, Patrick J. KW - #StaffPubs KW - BEDROCK KW - boreholes KW - characterization KW - design KW - discharge KW - eastern Massachusetts KW - flows KW - fractures KW - Framingham Quadrangle KW - ground water KW - Hydrogeology 21 KW - massachusetts KW - movement KW - Natik Quadrangle KW - occurrence KW - outcrops KW - surface water KW - topography KW - tunnels KW - United States AB - All occurrences of groundwater inflows in a 9 km long, 5-m diameter section of tunnel, 70 to 90 m below grade, were compared with subsurface fracture density, bedrock topography, surface topography, type of surficial deposits, proximity to surface water bodies, and the geographic distribution (domains; Mabee et al., this volume) of surface and subsurface fractures. Subsurface fracture density was calculated for the 320 fractures (through-going fractures) that intersect the entire circumference of the tunnel. Bedrock topography was determined using bore hole data collected during the design phase of the tunnel project. Surface topography is from 1:25,000 scale topographic maps and surficial geology is based on maps of the Framingham and Natick Quadrangles. Seven surface water bodies, primarily brooks and rivers, overlie the tunnel. Five surface fracture domains are based on 1513 fracture measurements collected from 21 outcrops within 3 km of the tunnel. In the tunnel, 413 fractures (all fractures, dips>45 degrees ) comprise seven subsurface fracture domains. High groundwater inflows generally correlate with areas of high subsurface fracture density and where four or more subsurface fracture domains overlap. In addition, high groundwater inflows are also generally located near surface water bodies and below permeable surficial deposits and topographic depressions, especially those with corresponding lows in the bedrock surface. Moreover, subsurface structures which correlate with prominent surface fracture domains produce the highest volume of groundwater inflow. However, not all tunnel sections exhibiting high fracture density and overlapping fracture domains exhibit high groundwater inflows. Also, there is no correlation between areas where two or more surface fracture domains overlap and the volume of groundwater discharging to the tunnel. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 31 SN - 00167592 IS - 77 N1 - Accession Number: 2001-037345; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - JOUR T1 - Correlation of lineaments to ground water inflows in a bedrock tunnel JF - Ground Water Y1 - 2002 A1 - Stephen B Mabee A1 - Curry, Patrick J. A1 - Hardcastle, Kenneth C. KW - #StaffPubs KW - aquifers KW - BEDROCK KW - construction KW - eastern Massachusetts KW - Engineering geology 30 KW - Framingham Quadrangle KW - ground water KW - hydrodynamics KW - Hydrogeology 21 KW - lineaments KW - massachusetts KW - Middlesex County Massachusetts KW - Natick Quadrangle KW - tectonics KW - tunnels KW - United States AB - Lineaments derived from three image types (1:80,000 black and white, 1:58,000 color infrared, and 1:250,000 side-looking airborne radar) were compared to water-bearing features within a 9.6 km section of tunnel being constructed through foliated crystalline metamorphic bedrock in a glaciated region of eastern Massachusetts. Lineaments drawn by three observers during two independent trials (N = 9137) were reduced to three sets (one per image type) of coincident lineaments (N = 794). Thirty-five coincident lineaments crossed the tunnel. Nineteen discrete flow zones, each producing ≥ 19 L/min, were identified in the tunnel and used to quantify the reliability of lineament analysis as a method of predicting water-bearing features in glaciated metamorphic rocks. Thirteen (68%) of the flow zones correlate with coincident lineaments, six zones correlate with more than one image type, and one zone correlates with all three image types. Overall, without additional corroborating evidence, it is difficult to interpret in advance which lineaments will result in a successful correlation with water-producing zones in the subsurface and which ones will not. Most of the observed flow (80%) correlates with northwest-trending coincident lineaments; however, the majority of the flow (67%) associated with these lineaments is produced from structures that strike to the north or northeast. In addition, only 15 of the 35 coincident lineaments correlate with the flow zones, indicating that 20 lineaments are not associated with any appreciable flow. Six flow zones are undetected by the lineament analysis. PB - National Ground Water Association : Urbana, IL, United States CY - United States VL - 40 SN - 0017467X UR - http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6584.2002.tb02489.x/abstract IS - 11 N1 - Accession Number: 2002-016666; Language: English; Coordinates: N420800N422800W0714300W0715300; Coden: GRWAAP; Collation: 7; Publication Types: Serial; Updated Code: 200206; Illustration(s): illus. incl. 6 tables, sketch map; Number of References: 38; Reviewed Item: Analytic JO - Ground Water ER -