%0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 2012 %T Implications for non-traditional geothermal resources in southern New England; variability in heat potential based on thermal conductivity and geochemistry studies %A Koteas, G. Christopher %A John Michael Rhodes %A Stephen B Mabee %A Ryan, Amy %A Schmidt, Joe %A League, Corey %A Goodhue, Nathaniel %A Adams, Sharon A. %A Gagnon, Teresa K. %A Thomas, Margaret A. %K #StaffPubs %K chemical composition %K Connecticut %K Economic geology, geology of energy sources 29A %K energy sources %K geothermal energy %K geothermal exploration %K granites %K heat flow %K igneous rocks %K massachusetts %K models %K New England %K plutonic rocks %K thermal conductivity %K United States %X Estimating geothermal potential in southern New England in the absence of borehole heat flow data or geophysical studies has led to a focus on models based on thermal conductivity, geochemistry, and density-based heat production models. Preliminary estimates of geothermal potential generally match borehole-based heat flow data from similar tectonic environments. Nevertheless, microstructural and compositional heterogeneity with depth remain largely unconstrained. The extrapolation of regional structures based on detailed field mapping has helped to improve structural projections adjacent to major basins. However, an additional source of error in models of heat potential-with-depth are thermal conductivity estimates of igneous and meta-igneous rocks throughout Massachusetts (MA) and Connecticut (CT). Over three hundred granitoid localities in MA and CT have been analyzed to date. The southern New England region can be simplified into four major litho-tectonic zones: the Taconic-Berkshire Zone of western MA and northwestern CT, The Bronson Hill Zone associated with the CT River valley, the Nashoba Zone of central MA and eastern CT, and the Milford-Dedham Zone of eastern MA and eastern CT. Granitic rocks adjacent to the CT River valley and the Narragansett Basin vary considerably in thermal conductivity. Granites adjacent to the Narragansett Basin vary from 2.9 to 3.7 W/m * K. Average thermal conductivity values, combined with modeled heat production values, produce temperatures at 3 km depth along the Narragansett Basin that approach 85-115 degrees C. Values of meta-igneous rocks from the margin of the CT River valley in MA and CT vary more considerably in thermal conductivity, from 1.8 to 3.9W/m * K. Modeled heat potentials at 3 km depths along the eastern margin of the CT River valley vary between 74-122 degrees C and appear to be largely related to compositional variation. However, local rock composition is also related to metamorphic grade and fabric development, suggesting that both fabric and composition are first order controls on thermal conductivity. Modeling based on these data set to date suggests that combining thermal conductivity, whole rock geochemistry data, and density measurements can produce accurate reconnaissance estimates of geothermal potential in southern New England. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 44 %P 76 - 77 %8 2012/02/01/ %@ 00167592 %G eng %U https://gsa.confex.com/gsa/2012NE/finalprogram/abstract_200837.htm %N 22 %! Abstracts with Programs - Geological Society of America %0 Online Database %D 2013 %T The Massachusetts Geothermal Data Project %A John Michael Rhodes %A Koteas, G. Christopher %A Stephen B Mabee %A Ryan, Amy %A Isaacson, M. %K #Geothermal %K #MGSPubs %K #Reports %K #Subsurface %K Andover Granite %K aqueous geochemistry %K Cape Anne granite %K ECS %K enhanced geothermal systems %K Fitchburg granite %K geothermal %K granite geochemistry %K granites %K heat flow %K hot dry rock %K hot springs %K thermal %K thermal conductivity %K thermal transmissivity %K whole rock geochemistry %K XRF %X A series of geothermal maps and datasets for Massachusetts derived from data collected by the MGS for Massachusetts and Connecticut. These data include whole rock geochemistry, rock and soil thermal conductivity, hot spring aqueous geochemistry, and derivative thermal and heatflow modeling. The project includes multiple datasets and products which can be accessed here or via the National Geothermal Data System (http://search.geothermaldata.org/dataset?q=Massachusetts). These datasets and products are: Maps: Comprising MGS Miscellaneous Maps 13-01 through 13-08 Data: can be downloaded from the links below