%0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1998 %T Comparison of lineaments with bedrock structures along a cross-strike transect, eastern Massachusetts %A Curry, Patrick J. %A Williams, Katherine W. %A Stephen B Mabee %A Hardcastle, Kenneth C. %K #StaffPubs %K aerial photography %K BEDROCK %K eastern Massachusetts %K faults %K geophysical surveys %K imagery %K lineaments %K massachusetts %K remote sensing %K SLAR %K Structural geology 16 %K surveys %K tectonics %K United States %X Lineament data derived from three platforms, 1:58,000 color infrared photography (N = 770), 1:80,000 black and white photographs (N = 1106), and 1:250,000 SLAR imagery (N = 521), were used to determine the degree of coincidence between mapped faults and lineaments along a cross strike transect in eastern Massachusetts. The study area extends 27 km in an east-west direction and 8 km north-south and is located along the trace of a tunnel currently being constructed approximately 90 m below grade. Structural data are presently being collected from surface exposures along the tunnel trace and from within the 5 m diameter tunnel bore. These structural data will be compared with lineament data in the future. Reported here are the results of a comparison between the locations of lineaments and the position of major faults mapped on the Bedrock Geologic Map of Massachusetts (1:250,000). Lineaments were first mapped on acetate overlays in two independent trials and compared to determine which lineaments could be reproduced at the same geographic location. Reproducibility results indicate that 21 to 33% of the lineaments can be reproduced at the same spatial position and are comparable to results obtained from other studies. The length of reproducible lineaments proximal to and approximately parallel with mapped faults was compared with the total length of faults (137 km) within the study area. Results show that a small percentage of the faults are coincident with reproducible lineaments. Three percent of the lengths are mapped by reproducible lineaments observed on the SLAR imagery, 7% by the 1:80,000 scale photographs, and 5% by the 1:58,000 color infrared photography. This indicates that 97%, 93%, and 95% of the reproducible lineaments, respectively, are related to other geologic features in the bedrock or nothing at all. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 30 %P 278 - 278 %8 1998/01/01/ %@ 00167592 %G eng %N 77 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 2001 %T Correlation of lineaments to ground water inflows in the MWRA tunnel %A Stephen B Mabee %A Curry, Patrick J. %A Hardcastle, Kenneth C. %K #StaffPubs %K black and white %K construction %K correlation %K eastern Massachusetts %K Engineering geology 30 %K experimental studies %K flow rates %K geophysical methods %K ground water %K infrared methods %K lineaments %K mapping %K massachusetts %K metamorphic rocks %K methods %K movement %K photogeology %K radar methods %K remote sensing %K SLAR %K tectonics %K tunnels %K United States %X Lineaments derived from three image types (1:80,000 black and white (BW), 1:58,000 color infrared (CIR), and 1:250,000 side-looking airborne radar (SLAR)) were compared to water-bearing features within a 9.6 km section of tunnel being constructed through foliated crystalline metamorphic bedrock in a glaciated region of eastern Massachusetts. Lineaments drawn by three observers during two independent trials (N = 9137) were reduced to three sets (one per image type) of coincident lineaments (N = 794). Thirty-five coincident lineaments crossed the tunnel. Nineteen discrete flow zones, each producing less than or equal to 19 L/min, were identified in the tunnel and used to quantify the reliability of lineament analysis as a method of predicting water-bearing features in glaciated metamorphic rocks. Thirteen (68%) of the flow zones correlate with coincident lineaments, six zones correlate with more than one image type, and one zone correlates with all three image types. Overall, it is difficult to distinguish lineaments that will be successful in predicting water-bearing zones from those that will be unsuccessful without considering other corroborating evidence. Most of the observed flow (80%) correlates with northwest-trending coincident lineaments. However, the majority of the flow (67%) associated with these lineaments is produced from structures that strike to the north or northeast. In addition, only fifteen of the thirty-five coincident lineaments correlate with the flow zones indicating that twenty lineaments are not associated with any appreciable flow. Six flow zones are undetected by the lineament analysis. In this study, BW lineaments are able distinguish high-yield through-going structures (at the 90% confidence level) with greater reliability than the SLAR or CIR lineaments. However, linking bedrock type, overburden type, topographic position, and proximity to surface water bodies with lineament analysis improves the predictive capability of the lineament method. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 33 %P 114 - 115 %8 2001/11/01/ %@ 00167592 %G eng %U https://gsa.confex.com/gsa/2001AM/finalprogram/abstract_22810.htm %N 66 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1999 %T Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 1, Lineaments and subsurface structures %A Curry, Patrick J. %A Hardcastle, Kenneth C. %A Stephen B Mabee %A Williams, Katherine W. %K #StaffPubs %K BEDROCK %K eastern Massachusetts %K fractures %K geophysical surveys %K ground water %K Hydrogeology 21 %K lineaments %K massachusetts %K metamorphic rocks %K movement %K New England %K remote sensing %K SLAR %K strike %K surveys %K tectonics %K tunnels %K United States %X Lineaments derived from three platforms; 1:250,000 Side-Looking Airborne Radar (SLAR) images, 1:58,000 Color Infrared (CIR) and 1:80,000 Black and White aerial photographs (BW), were compared to water bearing structures (n = 99) within a 9 km, 70 to 90 meter deep, east-west tunnel being constructed in eastern Massachusetts. Lineaments were drawn by three observers during two independent trials to produce 18 sets of lineaments (n = 9137) covering approximately 1,000 km (super 2) centered over the tunnel. All lineaments for each platform were compared. Three or more overlapping lineaments (azimuths within 5 degrees and within 1 mm at the scale of the imagery) define a single coincident lineament. This analysis generated three sets of coincident lineaments (n = 794), of these 37 cross the tunnel. Buffers were placed around the coincident lineaments at a distance of 1 mm from the center of the lineament at the scale of the platform (e.g. 250 m for the SLAR image). The Mann-Whitney U test was used to determine if the median flow from all tunnel structures which underlie the lineament buffer zones is significantly greater than that of all structures outside of the buffer zones. Results indicate that median flow (11,000 l/day) from structures located within the buffer zones of the BW are significantly greater at the 90% confidence level than the median flow (5,500 l/day) of structures located outside the buffer zones. No significant differences in flow were found for the other two platforms. Subsurface structures that parallel coincident lineaments (all platforms) and occur within the buffer zones have higher median flow (10,500 l/day) than those structures outside the buffer zones (6,600 l/day). However, this difference is significant at the 70% confidence level. These results suggest that, in some instances, a thorough lineament analysis can predict water-bearing subsurface structures in poorly exposed, glaciated, metamorphic terrain that has a high degree of suburban development. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 31 %P 347 - 348 %8 1999/01/01/ %@ 00167592 %G eng %N 77 %! Abstracts with Programs - Geological Society of America %0 Journal Article %J Ground Water Management %D 1990 %T Correlation of lineaments and bedrock fracture fabric; implications for regional fractured-bedrock aquifer studies, preliminary results from Georgetown, Maine %A Stephen B Mabee %A Hardcastle, Kenneth C. %A Donald U Wise %K #StaffPubs %K aquifers %K fractured materials %K fractures %K geophysical surveys %K Georgetown Maine %K ground water %K hydrogeology %K Hydrogeology 21 %K imagery %K Maine %K remote sensing %K Sagadahoc County Maine %K SLAR %K surveys %K United States %B Ground Water Management %I Water Well Journal Pub. Co. : Dublin, OH, United States %C United States %V 3 %P 283 - 297 %8 1990/01/01/ %@ 10479023 %G eng %U http://info.ngwa.org/gwol/pdf/900156672.PDF %! Ground Water Management %0 Generic %D %T NASA WorldWind %K #GISSoftware %K #MapsDataPublications %K GIS software %K landsat %K NASA %K remote sensing %X World Wind is an open-source (released under the NOSA license) virtual globe developed by NASA and the open source community for use on personal computers. %I NASA %G eng %U http://worldwind.arc.nasa.gov/