@proceedings {279, title = {Correlation of lineaments to ground water inflows in the MWRA tunnel}, volume = {33}, year = {2001}, note = {Accession Number: 2004-013313; Conference Name: Geological Society of America, 2001 annual meeting; Boston, MA, United States; Conference Date: 20011101; Language: English; Coden: GAAPBC; Collation: 2; Collation: 114-115; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200405; Monograph Title: Geological Society of America, 2001 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2001/11/01/}, pages = {114 - 115}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Lineaments derived from three image types (1:80,000 black and white (BW), 1:58,000 color infrared (CIR), and 1:250,000 side-looking airborne radar (SLAR)) were compared to water-bearing features within a 9.6 km section of tunnel being constructed through foliated crystalline metamorphic bedrock in a glaciated region of eastern Massachusetts. Lineaments drawn by three observers during two independent trials (N = 9137) were reduced to three sets (one per image type) of coincident lineaments (N = 794). Thirty-five coincident lineaments crossed the tunnel. Nineteen discrete flow zones, each producing less than or equal to 19 L/min, were identified in the tunnel and used to quantify the reliability of lineament analysis as a method of predicting water-bearing features in glaciated metamorphic rocks. Thirteen (68\%) of the flow zones correlate with coincident lineaments, six zones correlate with more than one image type, and one zone correlates with all three image types. Overall, it is difficult to distinguish lineaments that will be successful in predicting water-bearing zones from those that will be unsuccessful without considering other corroborating evidence. Most of the observed flow (80\%) correlates with northwest-trending coincident lineaments. However, the majority of the flow (67\%) associated with these lineaments is produced from structures that strike to the north or northeast. In addition, only fifteen of the thirty-five coincident lineaments correlate with the flow zones indicating that twenty lineaments are not associated with any appreciable flow. Six flow zones are undetected by the lineament analysis. In this study, BW lineaments are able distinguish high-yield through-going structures (at the 90\% confidence level) with greater reliability than the SLAR or CIR lineaments. However, linking bedrock type, overburden type, topographic position, and proximity to surface water bodies with lineament analysis improves the predictive capability of the lineament method.}, keywords = {$\#$StaffPubs, black and white, construction, correlation, eastern Massachusetts, Engineering geology 30, experimental studies, flow rates, geophysical methods, ground water, infrared methods, lineaments, mapping, massachusetts, metamorphic rocks, methods, movement, photogeology, radar methods, remote sensing, SLAR, tectonics, tunnels, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2001AM/finalprogram/abstract_22810.htm}, author = {Stephen B Mabee and Curry, Patrick J. and Hardcastle, Kenneth C.} } @proceedings {285, title = {Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 1, Lineaments and subsurface structures}, volume = {31}, year = {1999}, note = {Accession Number: 2001-037333; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 2; Collation: 347-348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1999/01/01/}, pages = {347 - 348}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Lineaments derived from three platforms; 1:250,000 Side-Looking Airborne Radar (SLAR) images, 1:58,000 Color Infrared (CIR) and 1:80,000 Black and White aerial photographs (BW), were compared to water bearing structures (n = 99) within a 9 km, 70 to 90 meter deep, east-west tunnel being constructed in eastern Massachusetts. Lineaments were drawn by three observers during two independent trials to produce 18 sets of lineaments (n = 9137) covering approximately 1,000 km (super 2) centered over the tunnel. All lineaments for each platform were compared. Three or more overlapping lineaments (azimuths within 5 degrees and within 1 mm at the scale of the imagery) define a single coincident lineament. This analysis generated three sets of coincident lineaments (n = 794), of these 37 cross the tunnel. Buffers were placed around the coincident lineaments at a distance of 1 mm from the center of the lineament at the scale of the platform (e.g. 250 m for the SLAR image). The Mann-Whitney U test was used to determine if the median flow from all tunnel structures which underlie the lineament buffer zones is significantly greater than that of all structures outside of the buffer zones. Results indicate that median flow (11,000 l/day) from structures located within the buffer zones of the BW are significantly greater at the 90\% confidence level than the median flow (5,500 l/day) of structures located outside the buffer zones. No significant differences in flow were found for the other two platforms. Subsurface structures that parallel coincident lineaments (all platforms) and occur within the buffer zones have higher median flow (10,500 l/day) than those structures outside the buffer zones (6,600 l/day). However, this difference is significant at the 70\% confidence level. These results suggest that, in some instances, a thorough lineament analysis can predict water-bearing subsurface structures in poorly exposed, glaciated, metamorphic terrain that has a high degree of suburban development.}, keywords = {$\#$StaffPubs, BEDROCK, eastern Massachusetts, fractures, geophysical surveys, ground water, Hydrogeology 21, lineaments, massachusetts, metamorphic rocks, movement, New England, remote sensing, SLAR, strike, surveys, tectonics, tunnels, United States}, isbn = {00167592}, author = {Curry, Patrick J. and Hardcastle, Kenneth C. and Stephen B Mabee and Williams, Katherine W.} } @proceedings {287, title = {Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 3, Surface vs. subsurface fracture characteristics}, volume = {31}, year = {1999}, note = {Accession Number: 2001-037340; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1999/01/01/}, pages = {348 - 348}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Major fracture sets (dip >45 degrees ), their geographic distributions (domains), and their characteristics (spacing, trace length, and planarity) were measured in surface outcrops and in a 9 km section of the tunnel (Curry et al., this volume) to determine how well fracture data collected at widely-spaced surface exposures can be extrapolated to a depth of 70 to 90 meters. For the surface fracture data set, fracture sets and domains were determined from 1513 measurements collected at 21 outcrops located within 3 km of the trace of the tunnel. Spacing, trace length, and planarity were determined from scanline measurements (n = 899). For the tunnel data set, 413 fracture measurements were made to determine major sets and domains and a smaller subset (n = 156) was used to estimate fracture characteristics.Five fracture sets (14, 38, 86, 117, and 171) were identified in the outcrops and seven sets (13, 29, 41, 62, 132, 159, and 175) in the tunnel. The 14 and 171 sets correspond well with the 13 and 175 sets in the tunnel. The 38 set observed at the surface includes parts of the 29 and 41 sets in the tunnel. The 86 set does occur in the tunnel but is undersampled because it is aligned with the tunnel. The 62 and 159 sets occur in the tunnel but are not seen at the surface. Although large areas are devoid of outcrops, comparison of surface and subsurface fracture domains indicates that only the 14 and 171 sets show a reasonable overlap with the 13 and 175 domains in the tunnel. These latter sets are the fractures generating most of the groundwater inflow into the tunnel. Median fracture spacing and trace lengths for the 13 and 175 sets in the tunnel are significantly wider and longer than the corresponding 14 and 171 sets at the surface. Fracture planarities showed no significant differences between any of the surface and subsurface fracture sets.}, keywords = {$\#$StaffPubs, BEDROCK, controls, eastern Massachusetts, factors, fractures, ground water, Hydrogeology 21, massachusetts, measurement, movement, New England, outcrops, spatial distribution, tunnels, United States}, isbn = {00167592}, author = {Stephen B Mabee and Williams, Katherine W. and Curry, Patrick J. and Hardcastle, Kenneth C.} } @proceedings {289, title = {Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 5, Geochemical interpretation of groundwater inflows}, volume = {31}, year = {1999}, note = {Accession Number: 2001-037342; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1999/01/01/}, pages = {348 - 348}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Samples of ground and surface waters in and above the tunnel (Curry et al., this volume) were collected to characterize the chemistry of groundwater discharging from fractures and faults. Forty-two water samples were collected: 32 along a transect of the tunnel and 10 from surface waters above the trace of the tunnel. All samples were analyzed for major anions and cations, and delta (super 18) O. Analysis of the anion/cation data indicated that these waters are dominated by sulfate+chloride and calcium+magnesium. However, five sub-classifications can be discerned based on the relative concentrations of ions in the samples. The five sub-classifications are Cl > HCO (sub 3) > SO (sub 4) > NO (sub 3) :Ca > Na+K > Mg (15 samples), Cl > HCO (sub 3) > SO (sub 4) > NO (sub 3) :Na+K > Ca > Mg (7 samples), Cl > HCO (sub 3) > SO (sub 4) > NO (sub 3) :Ca > Mg > Na+K (6 samples), Cl > SO (sub 4) > HCO (sub 3) > NO (sub 3) :Na+K > Ca > Mg (3 samples), and HCO (sub 3) > Cl > SO (sub 4) > NO (sub 3) :Ca > Na+K > Mg (2 samples). Results from statistical analyses indicate that alkalinity, calcium, sodium and potassium do vary as a function of bedrock type and that these differences are significant at the 95\% confidence level.In addition, preliminary oxygen isotope data indicate that two large, discrete water producing fault zones located in the eastern part of the tunnel are isotopically enriched (average delta (super 18) O = -7.75) relative to other water producing features in the tunnel (average delta (super 18) O = -8.96). The delta (super 18) O values obtained from all surface water bodies located above the tunnel average -7.56 whereas those values in surface ponds immediately above the fault zones average -6.71. Nitrate levels also show elevated levels in two water producing fault zones (>10 mg/L for some samples) and may result from accidental contamination during sampling, the use of explosives at discrete locations in the tunnel, or from leaking septic systems. The results of the oxygen isotope and nitrate analyses also suggest that some of the fault zones in the tunnel may have a rapid and direct hydraulic connection to the surface.}, keywords = {$\#$StaffPubs, anions, BEDROCK, cations, classification, discharge, eastern Massachusetts, fault zones, faults, geochemistry, ground water, hydraulic conductivity, hydrochemistry, Hydrogeology 21, Isotope geochemistry 02D, isotope ratios, isotopes, massachusetts, movement, New England, nitrate ion, O-18/O-16, oxygen, samples, stable isotopes, surface water, tunnels, United States}, isbn = {00167592}, author = {Weaver, Rebecca A. and Stephen B Mabee and Williams, Katherine W. and Curry, Patrick J.} } @proceedings {286, title = {Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 2, Fracture-supported coincident lineaments and subsurface structures}, volume = {31}, year = {1999}, note = {Accession Number: 2001-037344; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1999/01/01/}, pages = {348 - 348}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {As part of the evaluation of the ability of lineaments to map subsurface structures, the coincident lineaments which intersect the tunnel (Curry et al., this volume), were evaluated to isolate those lineaments considered to be "fracture-supported". By definition, fracture-supported coincident lineaments are those which parallel nearby surface fracture sets, mapped faults, lithologic contacts, and/or primary ductile structures; features which may be influential to subsurface groundwater flow. Of the 37 coincident lineaments delineated on the three scales of imagery studied, approximately 70\% are considered to be fracture-supported: 9 of the 13 on the 1:58,000 scale images, 10 of 14 on the 1:80,000, and 8 of 10 on the 1:250,000. However, the general lack of surface exposure precludes high confidence in the assignment of fracture-supported status to most lineaments. Large areas devoid of outcrops necessitated extrapolation of regional, surface fracture patterns (domains) to help define some fracture-supported coincident lineaments. There are two occurrences where fracture-supported coincident lineaments from all three scales overlap and are parallel. One occurrence successfully maps the zone of greatest fracture density and highest groundwater inflow (>560 l/min). The other occurrence maps an area of high fracture density and significant subsurface flow (95 l/min). In addition, one other high flow zone (>190 l/min) is mapped by a fracture-supported coincident lineament from the 1:80,000 scale imagery. However, many subsurface fractures and flow zones (<75 l/min) are not mapped by the coincident lineaments regardless of whether or not they are fracture-supported. When considering all fracture-supported coincident lineaments and parallel subsurface structures, the median flow (13,600 l/day) for the mapped structures is greater than the unmapped structures (6,800 liters/day). However, this difference is only significant at the 60\% confidence level.Although the tunnel sections with the greatest fracture density and highest groundwater inflows are successfully mapped by fracture supported coincident lineaments, not all water-bearing zones are delineated.}, keywords = {$\#$StaffPubs, BEDROCK, controls, eastern Massachusetts, factors, fractures, ground water, Hydrogeology 21, imagery, lineaments, massachusetts, movement, New England, outcrops, Structural geology 16, tectonics, tunnels, United States}, isbn = {00167592}, author = {Hardcastle, Kenneth C. and Curry, Patrick J. and Williams, Katherine W. and Stephen B Mabee} } @proceedings {288, title = {Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 4, Occurrence and characterization of groundwater inflows}, volume = {31}, year = {1999}, note = {Accession Number: 2001-037345; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1999/01/01/}, pages = {348 - 348}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {All occurrences of groundwater inflows in a 9 km long, 5-m diameter section of tunnel, 70 to 90 m below grade, were compared with subsurface fracture density, bedrock topography, surface topography, type of surficial deposits, proximity to surface water bodies, and the geographic distribution (domains; Mabee et al., this volume) of surface and subsurface fractures. Subsurface fracture density was calculated for the 320 fractures (through-going fractures) that intersect the entire circumference of the tunnel. Bedrock topography was determined using bore hole data collected during the design phase of the tunnel project. Surface topography is from 1:25,000 scale topographic maps and surficial geology is based on maps of the Framingham and Natick Quadrangles. Seven surface water bodies, primarily brooks and rivers, overlie the tunnel. Five surface fracture domains are based on 1513 fracture measurements collected from 21 outcrops within 3 km of the tunnel. In the tunnel, 413 fractures (all fractures, dips>45 degrees ) comprise seven subsurface fracture domains. High groundwater inflows generally correlate with areas of high subsurface fracture density and where four or more subsurface fracture domains overlap. In addition, high groundwater inflows are also generally located near surface water bodies and below permeable surficial deposits and topographic depressions, especially those with corresponding lows in the bedrock surface. Moreover, subsurface structures which correlate with prominent surface fracture domains produce the highest volume of groundwater inflow. However, not all tunnel sections exhibiting high fracture density and overlapping fracture domains exhibit high groundwater inflows. Also, there is no correlation between areas where two or more surface fracture domains overlap and the volume of groundwater discharging to the tunnel.}, keywords = {$\#$StaffPubs, BEDROCK, boreholes, characterization, design, discharge, eastern Massachusetts, flows, fractures, Framingham Quadrangle, ground water, Hydrogeology 21, massachusetts, movement, Natik Quadrangle, occurrence, outcrops, surface water, topography, tunnels, United States}, isbn = {00167592}, author = {Williams, Katherine W. and Stephen B Mabee and Hardcastle, Kenneth C. and Curry, Patrick J.} } @proceedings {291, title = {Field mapping and fracture characterization techniques predict groundwater preferential flow paths in fractured bedrock aquifers, Nashoba Terrane, MA}, volume = {86}, year = {2005}, note = {Accession Number: 2009-053313; Conference Name: American Geophysical Union 2005 fall meeting; San Francisco, CA, United States; Conference Date: 20051205; Language: English; Coordinates: N420800N424400W0710200W0715300; Coden: EOSTAJ; Collation: -1; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200930; Monograph Title: AGU 2005 fall meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2005/12/01/}, pages = {1477}, publisher = {American Geophysical Union : Washington, DC, United States}, edition = {Special supplement}, address = {United States}, abstract = {A study examining the relationship between fracture characteristics and groundwater was undertaken in the crystalline Nashoba Terrane of eastern Massachusetts. The Nashoba Terrane, a fault-bounded, highly deformed sliver of Paleozoic igneous and metamorphic rocks, covers an area of 600 sq km about 50 km northwest of Boston. Increasing industrial development coupled with population growth place significant pressure on developers to provide sufficient potable water for the population. To aid water development and management, this study examined fracture characteristics at regional, quadrangle and wellfield scales. The regional-scale work involved recording over 4000 structural measurements from 80 outcrops in the terrane. Fracture information recorded at each data station included strike and dip, trace length, spacing, termination, and fracture type. Preliminary results show that hydrostructural domains can be defined from combinations of fracture characterization and rock types. These domains are used to conceptualize general groundwater flow patterns in the subsurface: steeply dipping fractures, such as partings parallel to foliation enhance recharge potential and impose strong flow anisotropy. A different character is observed if steeply dipping joints intersect sheeting joints. In this instance, both recharge and lateral flow will be enhanced and flow anisotropy will be reduced. The distribution and intensity of particular fracture sets varies as a function of rock type, proximity to major features and local stress states. Partings parallel to foliation are prevalent in gneissic rocks whereas sheeting joints are more common in igneous rocks. Common joints are the most prevalent fractures, present in all rock types across the entire terrane. Quadrangle and wellfield scale data can be used to validate the regional-scale conceptual models. A comprehensive well-yield database was created to test the proposed models. Over 500 water wells in the terrane were evaluated to determine regions with high and low yield. The findings were evaluated in terms of location with respect to newly defined hydrostructural domain maps at both regional and quadrangle scales. Application of these hydrostructural domains in field studies can be useful not only in characterizing fracture intensity and distribution, but can shed more light on the potential of intersecting subsurface zones that could be exploited for economic gain. }, keywords = {$\#$StaffPubs, aquifers, BEDROCK, characterization, fractured materials, fractures, ground water, Hydrogeology 21, mapping, massachusetts, Middlesex County Massachusetts, movement, Nashoba terrane, patterns, preferential flow, recharge, reservoir properties, substrates, United States}, isbn = {00963941}, author = {Alex K Manda and Stephen B Mabee and Hubbs, S. A.} } @proceedings {293, title = {Fracture characterization maps; a new type of geologic map for hydrogeologic applications}, volume = {37}, year = {2005}, note = {Accession Number: 2006-039166; Conference Name: Geological Society of America, 2005 annual meeting; Salt Lake City, UT, United States; Conference Date: 20051016; Language: English; Coden: GAAPBC; Collation: 1; Collation: 145; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200612; Monograph Title: Geological Society of America, 2005 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2005/10/01/}, pages = {145 - 145}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Integration of a wide array of structural data with well-field hydrologic testing is increasingly recognized as a critical step in understanding groundwater flow behavior and recharge in crystalline bedrock aquifers (Lyford et al., 2003, Walsh and Lyford, 2002). As part of its rejuvenated mapping program, The Massachusetts Office of the State Geologist has been producing fracture characterization maps as a value-added accompaniment to traditional 1:24:000-scale bedrock mapping. Fracture characterization maps reclassify bedrock into domains of varying hydrologic significance, by combining rock properties (foliation steepness and development, partings, sheeting development, etc...) and type of overburden (permeable vs. non-permeable). The goal of these maps is to better understand preferential flow directions in the bedrock and the potential hydraulic connections between surficial and bedrock aquifers. Each fracture characterization map contains several summary panels, including standard geologic map bases overlain by typical rose diagrams and stereonets displaying fracture domains and trajectories, sheeting distribution, foliation trajectories, bedrock elevations, generalized piezometric surface configuration, and overburden type and thickness with separations into permeability class. A GIS well database is also included, showing well distribution, yield, bedrock elevation, and "hot-linked" well log images. All maps and raw data are made available to the public in paper, digital (PDF) or GIS format. We believe this approach will provide hydrologists and consultants with basic framework data that will expedite and improve the planning of subsurface investigations, construction activities, and groundwater exploration.}, keywords = {$\#$StaffPubs, applications, aquifers, BEDROCK, characterization, classification, crystalline rocks, exploration, fractures, ground water, hydrodynamics, Hydrogeology 21, mapping, movement, overburden, permeability, potentiometric surface, spatial distribution, surficial aquifers, thickness, water wells, water yield}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2005AM/finalprogram/abstract_94576.htm}, author = {Stephen B Mabee and Joseph P Kopera} } @proceedings {295, title = {Fracture characterization; valuable inputs for modeling groundwater flow in fractured bedrock}, volume = {28}, year = {1996}, note = {Accession Number: 1996-065028; Conference Name: Geological Society of America, Northeastern Section, 31st annual meeting; Buffalo, NY, United States; Conference Date: 19960321; Language: English; Coordinates: N364500N374500W1190100W1203800; Coden: GAAPBC; Collation: 1; Collation: 77; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 199620; Monograph Title: Geological Society of America, Northeastern Section, 31st annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {1996/02/01/}, pages = {77 - 77}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, keywords = {$\#$StaffPubs, BEDROCK, boreholes, California, discontinuities, experimental studies, field studies, fractured materials, fractures, ground water, Hydrogeology 21, Madera County California, models, movement, observation wells, Raymond California, site exploration, spatial distribution, transmissivity, United States, wells}, isbn = {00167592}, author = {Stephen B Mabee and Hardcastle, Kenneth C.} } @proceedings {296, title = {Fracture patterns across two terrane boundaries in eastern Massachusetts; implications for regional groundwater flow and recharge}, volume = {38}, year = {2006}, note = {Accession Number: 2010-054322; Conference Name: Geological Society of America, 2006 annual meeting; Philadelphia, PA, United States; Conference Date: 20061022; Language: English; Coden: GAAPBC; Collation: 1; Collation: 434; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201030; Monograph Title: Geological Society of America, 2006 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2006/10/01/}, pages = {434 - 434}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {The integration of structural data and field-based observations is becoming increasingly critical in understanding groundwater flow behavior and recharge potential. Over the past 3 years, the Office of the Massachusetts State Geologist (OMSG) has collected 8225 fracture measurements from 187 stations across 3 adjacent quadrangles as part of its bedrock geologic mapping program. These data provide a north-south transect across the Nashoba Terrane and its boundaries with the Merrimack Belt and Avalon Terranes in eastern Massachusetts. Areas with similar fracture patterns can be grouped into "hydrostructural domains" with distinct hydrogeologic properties. Within the above transect, hydrostructural domains were observed to closely correspond with bedrock lithology and ductile structure, and therefore, tectonic history. Such domains are commonly bounded by faults or intrusive contacts. Common features observed across all domains include a NE-striking regional foliation with corresponding NW-striking, steeply-dipping cross-joints. Strongly layered metasedimentary and metavolcanic rocks of the Merrimack Belt and the Marlborough Formation in the Nashoba Terrane tend to have the most pervasive and closely-spaced foliation-parallel fractures (FPF). Foliation intensity and FPF generally increases towards shear zones and regional fault systems, especially within granites and gneisses. The moderate to steeply dipping, well-developed FPF in these rocks provides a potentially excellent conduit for vertical recharge and a strong NE-trending regional anistropy that may control groundwater flow. Granitoidal rocks have very consistent NS-EW orthogonal networks of vertical fractures and subhorizontal sheeting joints, providing excellent potential for vertical recharge and near-surface lateral flow. Features such as small brittle faults, fracture zones, fold axes, and fracture sets distinct to each domain may dominate local groundwater flow and recharge. Abstract 116563 modified by 72.70.224.253 on 7-12-2006}, keywords = {$\#$StaffPubs, Avalon Zone, BEDROCK, eastern Massachusetts, faults, foliation, fractures, ground water, Hydrogeology 21, joints, massachusetts, Merrimack Belt, movement, observations, patterns, properties, recharge, shear zones, style, terranes, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2006AM/finalprogram/abstract_116563.htm}, author = {Stephen B Mabee and Joseph P Kopera} } @proceedings {267, title = {A new way of looking at, and mapping, bedrock; the hydrostructural domain map of the Ayer Quadrangle, northeastern Massachusetts}, volume = {38}, year = {2006}, note = {Accession Number: 2008-100620; Conference Name: Geological Society of America, 2006 annual meeting; Philadelphia, PA, United States; Conference Date: 20061022; Language: English; Coden: GAAPBC; Collation: 1; Collation: 166; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200816; Monograph Title: Geological Society of America, 2006 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2006/10/01/}, pages = {166 - 166}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {While traditional bedrock geologic maps contain valuable information, they commonly lack data on fractures and physical properties of the rock. The increased need for better understanding of groundwater behavior in bedrock aquifers has made this data critical. Hydrostructural domain maps reclassify bedrock based on fracture systems and physical properties that may have implications for groundwater flow and recharge. These maps are constructed from detailed field observations and measurements of 2000-3000 fractures from 60-70 stations across a 7.5{\textquoteright} quadrangle. Hydrostructural domains are displayed on the map as traditional lithologic units would be, with detailed descriptions and photos of the fracture characteristics and physical properties of each hydrostructural "unit". In the Ayer Quadrangle, such domains closely correspond with bedrock lithology and ductile structural history. Steeply dipping metasedimentary rocks of the Merrimack Belt have pervasive, closely spaced, throughgoing fractures developed parallel to foliation, and therefore provide an excellent potential for vertical recharge. Where these rocks are intensely cut by a strong subhorizontal cleavage, a parallel fracture set dominates providing an opportunity for lateral flow. Massive granites generally have a well developed, widely-spaced orthogonal network of fracture zones which may provide excellent local recharge. High-grade gneisses of the Nashoba Terrane have poorly developed fracture sets except near regional shear zones, where foliation parallel fractures and cross-joints may provide good vertical recharge and provide a strong northeast trending flow anisotropy. These maps are intended to provide a regional-scale information to assist in site-specific groundwater investigations. We believe that such maps are an example of how new types of geologic maps can, and must, be developed to address changing societal needs.}, keywords = {$\#$StaffPubs, aquifers, Ayer Quadrangle, BEDROCK, faults, foliation, fracture zones, fractures, ground water, Hydrogeology 21, joints, mapping, massachusetts, measurement, Merrimack Belt, movement, Nashoba terrane, northeastern Massachusetts, observations, orientation, physical properties, recharge, shear zones, Structural geology 16, style, United States}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2006AM/finalprogram/abstract_116561.htm}, author = {Joseph P Kopera and Stephen B Mabee} } @article {270, title = {Analyzing outcrop-scale fracture features to supplement investigations of bedrock aquifers}, journal = {Hydrogeology Journal}, volume = {5}, year = {1997}, note = {Accession Number: 1998-019185; Language: English; Language of Summary: French; Spanish; Coordinates: N364500N374500W1190100W1203800; Collation: 16; Publication Types: Serial; Updated Code: 199808; Illustration(s): illus. incl. 3 tables, sketch maps; Number of References: 28; Reviewed Item: Analytic}, month = {1997/01/01/}, pages = {21 - 36}, publisher = {Verlag Heinz Heise : Hanover, Federal Republic of Germany}, address = {Federal Republic of Germany}, abstract = {A case study was conducted of 79 outcrops within 150 meters of the nine, 7590 m deep boreholes at the Lawrence Berkeley Laboratory (LBL) Fracture Hydrology Field Site in Raymond, California, USA, in order to make preliminary comparisons between surface fracture data and geophysical and hydrologic testing conducted in the boreholes. The orientation, trace length, spacing, roughness, planarity, associated mineralization, and domains (the geographic distribution of specific fracture sets) of 471 fractures were measured. Five families of steeply-dipping fractures and one family of shallow dipping fractures comprise 75 percent of the data and trend 52, 62, 130, 147, 173, and 35, respectively. The geographic distributions (domains) of the families, however, show the well field to be within the domains of the 62-, 173- and 35-trending families. The steeply-dipping fractures detected in the boreholes by LBL via acoustic televiewer logging trend about 65, 173, and 30 corroborating the findings of the fracture-domain analysis. Results indicate that the boreholes are located within a laumontite-mineralized area, including a steeply-dipping, 160-trending zone, 520 cm wide, of laumontite-rich pods that transects the boreholes. Independent hydrologic tests by LBL revealed a 160-trending barrier to groundwater flow between some of the boreholes, precisely where the 160-trending zone of laumontite-mineralized pods was mapped.}, keywords = {$\#$StaffPubs, aquifers, BEDROCK, boreholes, California, dip fractures, field studies, fractures, framework silicates, ground water, hydrodynamics, Hydrogeology 21, laumontite, Madera County California, mapping, mineralization, movement, Raymond California, roughness, silicates, United States, zeolite group}, isbn = {1431217414350157}, url = {http://link.springer.com/article/10.1007/s100400050106}, author = {Stephen B Mabee and Hardcastle, Kenneth C.} } @article {274, title = {Comparison of three fracture sampling methods for layered rocks}, journal = {International Journal of Rock Mechanics and Mining Sciences [1997]}, volume = {47}, year = {2010}, note = {Accession Number: 2010-041538; Language: English; Coordinates: N441500N452000W0865600W0880000; Coden: IJRMA2; Collation: 9; Publication Types: Serial; Updated Code: 201023; Illustration(s): illus. incl. 4 tables; Number of References: 25; Reviewed Item: Analytic}, month = {2010/02/01/}, pages = {218 - 226}, publisher = {Elsevier : Oxford-New York, International}, address = {International}, abstract = {Three methods of fracture data collection are tested against each other in layered dolomitic rocks to evaluate the effectiveness of each method in sampling fracture properties. The methods tested are the single scanline method (SSM), selection method (SM), and multiple scanline method (MSM). Finite element techniques were first used to build a base model with the exact locations, sizes and orientations of each fracture observed in the natural fracture network. Then, a second set of models were stochastically generated using statistics from each sampling technique. For each network, the overall fracture intensity was used to assess the effectiveness of each sampling technique in capturing the real fracture properties. Fracture network permeability was also calculated for each of two directions to evaluate the transmissive properties of the networks. Although all three methods produced good matches of relative intensity and permeability between natural and synthetic fractures, the results reveal that a well-placed scanline performed the best at recreating natural fractures. However, the results from one variation of the SSM were only slightly better than the results from both versions of the SM. In general, the SSM provides the best results but possibly at heavy costs in time and labor, whereas the SM gives comparable results with less expenditure of energy and time. Thus, the SM is an adequate technique and recommended for use at large outcrops or where time, access or budget constraints are a concern.}, keywords = {$\#$StaffPubs, Big Quarry, carbonates, case studies, data acquisition, data processing, dolomite, Door Peninsula, fractures, geographic information systems, ground water, information systems, joints, layered materials, mapping, methods, movement, multiple scanline method, northeastern Wisconsin, numerical models, permeability, sampling, selection method, simulation, single scanline method, statistical analysis, Structural geology 16, style, three-dimensional models, United States, Wisconsin}, isbn = {13651609}, url = {http://www.sciencedirect.com/science/article/pii/S1365160909001804}, author = {Alex K Manda and Stephen B Mabee} } @article {305, title = {Influence of rock fabric on fracture attribute distribution and implications for groundwater flow in the Nashoba Terrane, eastern Massachusetts}, journal = {Journal of Structural Geology}, volume = {30}, year = {2008}, note = {Accession Number: 2009-050694; Language: English; Coden: JSGEDY; Collation: 14; Publication Types: Serial; Updated Code: 200928; Reviewed Item: Analytic}, month = {2008/04/01/}, pages = {464 - 477}, publisher = {Elsevier : Oxford, International}, address = {International}, abstract = {Attributes (i.e. trace-length, spacing, termination and orientation) of joints and foliation-parallel fractures (FPFs) are used to assess the influence of lithology and fabric on fracture type and distribution in metamorphic and igneous rocks of the Nashoba terrane, Massachusetts. Orientations of NE-SW and NW-SE trending joints are consistent throughout the region, whereas FPFs are sub-parallel to the axis of the terrane. Joint spacing generally decreases to the northeast across the terrane reflecting lithologic changes from metamorphic to igneous rock types. Although trace-length and spacing frequency distributions of both joints and FPFs are best described by lognormal functions, FPFs possess narrower fracture spacing than joints. Median fracture trace-lengths of all FPFs are comparable to those of all steep joints, but the median fracture spacing is half that of all steep joints. Trace-lengths of FPFs vary as a function of the degree of development of foliation. Fracture attributes and groundwater flow models suggest that FPFs may significantly increase fracture connectivity and potential for groundwater recharge. FPFs may account for as much as 30\% of flow in fracture networks suggesting that in addition to joints, FPFs play a significant role in groundwater hydraulics that may include imparting flow anisotropy on the groundwater system.}, keywords = {$\#$StaffPubs, foliation, fractures, ground water, Hydrogeology 21, joints, massachusetts, movement, Nashoba terrane, preferred orientation, statistical distribution, structural analysis, Structural geology, style, terranes, United States}, isbn = {01918141}, url = {http://www.sciencedirect.com/science/article/pii/S0191814107002362}, author = {Alex K Manda and Stephen B Mabee and Donald U Wise} }