@proceedings {297, title = {Geochemistry of gneisses and amphibolites in the Uchee Belt of western Georgia and eastern Alabama; an ACRES progress report}, volume = {32}, year = {2000}, note = {Accession Number: 2002-039126; Conference Name: Geological Society of America, Southeastern Section, 49th annual meeting; Charleston, SC, United States; Conference Date: 20000323; Language: English; Coordinates: N322800N322800W0845900W0845900; Coden: GAAPBC; Collation: 1; Collation: 31; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200214; Monograph Title: Geological Society of America, Southeastern Section, 49th annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic}, month = {2000/03/01/}, pages = {31 - 31}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, address = {United States}, abstract = {Undergraduate students, high school teachers, and university faculty representing ACRES (Atlanta Consortium for Research in Earth Sciences) studied lineated gneiss (LG) exposed at Flat Rock Park (FRP) and vicinity in Columbus, GA, and Motts gneiss (MG) in eastern Alabama. The LG and MG are mineralogically and geochemically granitoidal lineated orthogneisses. They contain deformed mafic xenoliths, as well as aplitic, granitic and pegmatoidal dikes that cut the dominant lineation. Based on chemical analyses, the LG from FRP and the MG plot as granite on the IUGS diagrams and the Le Bas diagram. Similarity in incompatible trace element ratios (e.g., Zr/Nb) and highly evolved characteristics of aplite with respect to the host gneisses, indicate there is probably a genetic link between the MG and the FRP LG. These rocks are chemically distinct from other nearby felsic gneiss. Phenix City gneiss amphibolites from Lindsey Creek and North Highland Mills dam in Columbus were also analyzed for major and trace elements. These amphibolites are low K tholeiitic rocks with an island arc affinity and are similar to rocks from the area that have already been analyzed. The amphibolites show a wide range of fractionation (41 to 62 percent SiO (sub 2) ). Consistency in incompatible element ratios over a wide range of fractionation of some of the samples show a probable genetic relationship among the various amphibolites of Lindsey Creek. Future work should involve more extensive collecting and analysis of both felsic rocks and amphibolites in the Uchee belt. More time should also be spent describing the thin sections of the existing collection and comparing the REE patterns for the FRP, MG and other felsic rocks in the Uchee belt.}, keywords = {$\#$StaffPubs, Alabama, amphibolite, chemical composition, Columbus Georgia, dikes, Georgia, gneisses, Igneous and metamorphic petrology 05A, inclusions, intrusions, metamorphic rocks, Muscogee County Georgia, Uchee Belt, United States, xenoliths}, isbn = {00167592}, author = {Joseph P Kopera and Nicholas, Brian and Todd, Dave and Davison, Jeff and Hanley, Tom and Kar, Aditya and La Tour, Timothy E. and Edwards, Tonya} } @proceedings {317, title = {Guiding principles for use of digital technology in geologic data collection and distribution}, volume = {46}, year = {2014}, month = {2014/01/01/}, pages = {75 - 75}, publisher = {Geological Society of America (GSA) : Boulder, CO, United States}, abstract = {The past decade has seen a dramatic shift in the public perception of a map as a static paper document to a dynamic digital interface for addressing a specific geographic question. The adoption of digital technology for geologic data collection, compilation, and distribution has many advantages but requires a similar shift in attitudes towards the nature of data and resulting maps themselves to ensure that they remain accessible, viable, and relevant in this new paradigm. We propose a set of guiding principles for the use of digital technology in geologic data and map production: 1.) Utilize dedicated digital data professionals (DDPs): It is unreasonable to expect that geologists maintain expertise in their field and be thoroughly versed in complex and rapidly changing best practices for digital data. Following the recommendations of the National Research Council (2009), DDPs should be embedded in any research endeavor from its inception with geologists being savvy enough in digital technology to maintain productive engagement with DDPs. 2.) Use appropriate technology: Fully digital workflows and field equipment are not appropriate for all projects. Free or open-source software (FOSS) and easily available low-cost hardware (i.e., smartphones) have also met or surpassed the utility of many proprietary technology solutions thus reducing the price and increasing accessibility of data. 3.) Practice good data management: Digital data takes considerable resources and sustained effort to remain viable even shortly after its production. Best practices in data accessibility (data standards, open formats, etc.) and maintenance (refreshing, migration, etc.) in addition to robust metadata creation, through all phases of a project, are unquestionably necessary. 4.) Approach maps and digital data as living dynamic entities: Geologic data is out of date the moment it is published. A primary advantage of digital datasets is their ability to be easily updated, queried, and manipulated in infinite ways. Derivative products for specific applications are in arguably higher demand by end users than the data itself. Geologists must design for flexibility, appropriateness of use, and the persistence of their expert interpretations through development of all possible end products of and updates to the map and dataset.}, keywords = {$\#$StaffPubs, data, data preservation, databases, digital, digital data, digital geologic maps, geologic maps, GIS, migration}, isbn = {00167592}, url = {https://gsa.confex.com/gsa/2014NE/webprogram/Paper236362.html}, author = {Joseph P Kopera and House, P. Kyle and Schmidt, Maxine and Clark, Ryan} }