TY - Generic T1 - Comparison of lineaments with bedrock structures along a cross-strike transect, eastern Massachusetts T2 - Abstracts with Programs - Geological Society of America Y1 - 1998 A1 - Curry, Patrick J. A1 - Williams, Katherine W. A1 - Stephen B Mabee A1 - Hardcastle, Kenneth C. KW - #StaffPubs KW - aerial photography KW - BEDROCK KW - eastern Massachusetts KW - faults KW - geophysical surveys KW - imagery KW - lineaments KW - massachusetts KW - remote sensing KW - SLAR KW - Structural geology 16 KW - surveys KW - tectonics KW - United States AB - Lineament data derived from three platforms, 1:58,000 color infrared photography (N = 770), 1:80,000 black and white photographs (N = 1106), and 1:250,000 SLAR imagery (N = 521), were used to determine the degree of coincidence between mapped faults and lineaments along a cross strike transect in eastern Massachusetts. The study area extends 27 km in an east-west direction and 8 km north-south and is located along the trace of a tunnel currently being constructed approximately 90 m below grade. Structural data are presently being collected from surface exposures along the tunnel trace and from within the 5 m diameter tunnel bore. These structural data will be compared with lineament data in the future. Reported here are the results of a comparison between the locations of lineaments and the position of major faults mapped on the Bedrock Geologic Map of Massachusetts (1:250,000). Lineaments were first mapped on acetate overlays in two independent trials and compared to determine which lineaments could be reproduced at the same geographic location. Reproducibility results indicate that 21 to 33% of the lineaments can be reproduced at the same spatial position and are comparable to results obtained from other studies. The length of reproducible lineaments proximal to and approximately parallel with mapped faults was compared with the total length of faults (137 km) within the study area. Results show that a small percentage of the faults are coincident with reproducible lineaments. Three percent of the lengths are mapped by reproducible lineaments observed on the SLAR imagery, 7% by the 1:80,000 scale photographs, and 5% by the 1:58,000 color infrared photography. This indicates that 97%, 93%, and 95% of the reproducible lineaments, respectively, are related to other geologic features in the bedrock or nothing at all. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 30 SN - 00167592 IS - 77 N1 - Accession Number: 1999-032582; Conference Name: Geological Society of America, 1998 annual meeting; Toronto, ON, Canada; Conference Date: 19981026; Language: English; Coden: GAAPBC; Collation: 1; Collation: 278; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 199912; Monograph Title: Geological Society of America, 1998 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - Generic T1 - Correlation of lineaments to ground water inflows in the MWRA tunnel T2 - Abstracts with Programs - Geological Society of America Y1 - 2001 A1 - Stephen B Mabee A1 - Curry, Patrick J. A1 - Hardcastle, Kenneth C. KW - #StaffPubs KW - black and white KW - construction KW - correlation KW - eastern Massachusetts KW - Engineering geology 30 KW - experimental studies KW - flow rates KW - geophysical methods KW - ground water KW - infrared methods KW - lineaments KW - mapping KW - massachusetts KW - metamorphic rocks KW - methods KW - movement KW - photogeology KW - radar methods KW - remote sensing KW - SLAR KW - tectonics KW - tunnels KW - United States AB - Lineaments derived from three image types (1:80,000 black and white (BW), 1:58,000 color infrared (CIR), and 1:250,000 side-looking airborne radar (SLAR)) were compared to water-bearing features within a 9.6 km section of tunnel being constructed through foliated crystalline metamorphic bedrock in a glaciated region of eastern Massachusetts. Lineaments drawn by three observers during two independent trials (N = 9137) were reduced to three sets (one per image type) of coincident lineaments (N = 794). Thirty-five coincident lineaments crossed the tunnel. Nineteen discrete flow zones, each producing less than or equal to 19 L/min, were identified in the tunnel and used to quantify the reliability of lineament analysis as a method of predicting water-bearing features in glaciated metamorphic rocks. Thirteen (68%) of the flow zones correlate with coincident lineaments, six zones correlate with more than one image type, and one zone correlates with all three image types. Overall, it is difficult to distinguish lineaments that will be successful in predicting water-bearing zones from those that will be unsuccessful without considering other corroborating evidence. Most of the observed flow (80%) correlates with northwest-trending coincident lineaments. However, the majority of the flow (67%) associated with these lineaments is produced from structures that strike to the north or northeast. In addition, only fifteen of the thirty-five coincident lineaments correlate with the flow zones indicating that twenty lineaments are not associated with any appreciable flow. Six flow zones are undetected by the lineament analysis. In this study, BW lineaments are able distinguish high-yield through-going structures (at the 90% confidence level) with greater reliability than the SLAR or CIR lineaments. However, linking bedrock type, overburden type, topographic position, and proximity to surface water bodies with lineament analysis improves the predictive capability of the lineament method. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 33 SN - 00167592 UR - https://gsa.confex.com/gsa/2001AM/finalprogram/abstract_22810.htm IS - 66 N1 - Accession Number: 2004-013313; Conference Name: Geological Society of America, 2001 annual meeting; Boston, MA, United States; Conference Date: 20011101; Language: English; Coden: GAAPBC; Collation: 2; Collation: 114-115; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200405; Monograph Title: Geological Society of America, 2001 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - Generic T1 - Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 1, Lineaments and subsurface structures T2 - Abstracts with Programs - Geological Society of America Y1 - 1999 A1 - Curry, Patrick J. A1 - Hardcastle, Kenneth C. A1 - Stephen B Mabee A1 - Williams, Katherine W. KW - #StaffPubs KW - BEDROCK KW - eastern Massachusetts KW - fractures KW - geophysical surveys KW - ground water KW - Hydrogeology 21 KW - lineaments KW - massachusetts KW - metamorphic rocks KW - movement KW - New England KW - remote sensing KW - SLAR KW - strike KW - surveys KW - tectonics KW - tunnels KW - United States AB - Lineaments derived from three platforms; 1:250,000 Side-Looking Airborne Radar (SLAR) images, 1:58,000 Color Infrared (CIR) and 1:80,000 Black and White aerial photographs (BW), were compared to water bearing structures (n = 99) within a 9 km, 70 to 90 meter deep, east-west tunnel being constructed in eastern Massachusetts. Lineaments were drawn by three observers during two independent trials to produce 18 sets of lineaments (n = 9137) covering approximately 1,000 km (super 2) centered over the tunnel. All lineaments for each platform were compared. Three or more overlapping lineaments (azimuths within 5 degrees and within 1 mm at the scale of the imagery) define a single coincident lineament. This analysis generated three sets of coincident lineaments (n = 794), of these 37 cross the tunnel. Buffers were placed around the coincident lineaments at a distance of 1 mm from the center of the lineament at the scale of the platform (e.g. 250 m for the SLAR image). The Mann-Whitney U test was used to determine if the median flow from all tunnel structures which underlie the lineament buffer zones is significantly greater than that of all structures outside of the buffer zones. Results indicate that median flow (11,000 l/day) from structures located within the buffer zones of the BW are significantly greater at the 90% confidence level than the median flow (5,500 l/day) of structures located outside the buffer zones. No significant differences in flow were found for the other two platforms. Subsurface structures that parallel coincident lineaments (all platforms) and occur within the buffer zones have higher median flow (10,500 l/day) than those structures outside the buffer zones (6,600 l/day). However, this difference is significant at the 70% confidence level. These results suggest that, in some instances, a thorough lineament analysis can predict water-bearing subsurface structures in poorly exposed, glaciated, metamorphic terrain that has a high degree of suburban development. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 31 SN - 00167592 IS - 77 N1 - Accession Number: 2001-037333; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 2; Collation: 347-348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - Generic T1 - Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 3, Surface vs. subsurface fracture characteristics T2 - Abstracts with Programs - Geological Society of America Y1 - 1999 A1 - Stephen B Mabee A1 - Williams, Katherine W. A1 - Curry, Patrick J. A1 - Hardcastle, Kenneth C. KW - #StaffPubs KW - BEDROCK KW - controls KW - eastern Massachusetts KW - factors KW - fractures KW - ground water KW - Hydrogeology 21 KW - massachusetts KW - measurement KW - movement KW - New England KW - outcrops KW - spatial distribution KW - tunnels KW - United States AB - Major fracture sets (dip >45 degrees ), their geographic distributions (domains), and their characteristics (spacing, trace length, and planarity) were measured in surface outcrops and in a 9 km section of the tunnel (Curry et al., this volume) to determine how well fracture data collected at widely-spaced surface exposures can be extrapolated to a depth of 70 to 90 meters. For the surface fracture data set, fracture sets and domains were determined from 1513 measurements collected at 21 outcrops located within 3 km of the trace of the tunnel. Spacing, trace length, and planarity were determined from scanline measurements (n = 899). For the tunnel data set, 413 fracture measurements were made to determine major sets and domains and a smaller subset (n = 156) was used to estimate fracture characteristics.Five fracture sets (14, 38, 86, 117, and 171) were identified in the outcrops and seven sets (13, 29, 41, 62, 132, 159, and 175) in the tunnel. The 14 and 171 sets correspond well with the 13 and 175 sets in the tunnel. The 38 set observed at the surface includes parts of the 29 and 41 sets in the tunnel. The 86 set does occur in the tunnel but is undersampled because it is aligned with the tunnel. The 62 and 159 sets occur in the tunnel but are not seen at the surface. Although large areas are devoid of outcrops, comparison of surface and subsurface fracture domains indicates that only the 14 and 171 sets show a reasonable overlap with the 13 and 175 domains in the tunnel. These latter sets are the fractures generating most of the groundwater inflow into the tunnel. Median fracture spacing and trace lengths for the 13 and 175 sets in the tunnel are significantly wider and longer than the corresponding 14 and 171 sets at the surface. Fracture planarities showed no significant differences between any of the surface and subsurface fracture sets. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 31 SN - 00167592 IS - 77 N1 - Accession Number: 2001-037340; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - Generic T1 - Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 5, Geochemical interpretation of groundwater inflows T2 - Abstracts with Programs - Geological Society of America Y1 - 1999 A1 - Weaver, Rebecca A. A1 - Stephen B Mabee A1 - Williams, Katherine W. A1 - Curry, Patrick J. KW - #StaffPubs KW - anions KW - BEDROCK KW - cations KW - classification KW - discharge KW - eastern Massachusetts KW - fault zones KW - faults KW - geochemistry KW - ground water KW - hydraulic conductivity KW - hydrochemistry KW - Hydrogeology 21 KW - Isotope geochemistry 02D KW - isotope ratios KW - isotopes KW - massachusetts KW - movement KW - New England KW - nitrate ion KW - O-18/O-16 KW - oxygen KW - samples KW - stable isotopes KW - surface water KW - tunnels KW - United States AB - Samples of ground and surface waters in and above the tunnel (Curry et al., this volume) were collected to characterize the chemistry of groundwater discharging from fractures and faults. Forty-two water samples were collected: 32 along a transect of the tunnel and 10 from surface waters above the trace of the tunnel. All samples were analyzed for major anions and cations, and delta (super 18) O. Analysis of the anion/cation data indicated that these waters are dominated by sulfate+chloride and calcium+magnesium. However, five sub-classifications can be discerned based on the relative concentrations of ions in the samples. The five sub-classifications are Cl > HCO (sub 3) > SO (sub 4) > NO (sub 3) :Ca > Na+K > Mg (15 samples), Cl > HCO (sub 3) > SO (sub 4) > NO (sub 3) :Na+K > Ca > Mg (7 samples), Cl > HCO (sub 3) > SO (sub 4) > NO (sub 3) :Ca > Mg > Na+K (6 samples), Cl > SO (sub 4) > HCO (sub 3) > NO (sub 3) :Na+K > Ca > Mg (3 samples), and HCO (sub 3) > Cl > SO (sub 4) > NO (sub 3) :Ca > Na+K > Mg (2 samples). Results from statistical analyses indicate that alkalinity, calcium, sodium and potassium do vary as a function of bedrock type and that these differences are significant at the 95% confidence level.In addition, preliminary oxygen isotope data indicate that two large, discrete water producing fault zones located in the eastern part of the tunnel are isotopically enriched (average delta (super 18) O = -7.75) relative to other water producing features in the tunnel (average delta (super 18) O = -8.96). The delta (super 18) O values obtained from all surface water bodies located above the tunnel average -7.56 whereas those values in surface ponds immediately above the fault zones average -6.71. Nitrate levels also show elevated levels in two water producing fault zones (>10 mg/L for some samples) and may result from accidental contamination during sampling, the use of explosives at discrete locations in the tunnel, or from leaking septic systems. The results of the oxygen isotope and nitrate analyses also suggest that some of the fault zones in the tunnel may have a rapid and direct hydraulic connection to the surface. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 31 SN - 00167592 IS - 77 N1 - Accession Number: 2001-037342; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - Generic T1 - Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 2, Fracture-supported coincident lineaments and subsurface structures T2 - Abstracts with Programs - Geological Society of America Y1 - 1999 A1 - Hardcastle, Kenneth C. A1 - Curry, Patrick J. A1 - Williams, Katherine W. A1 - Stephen B Mabee KW - #StaffPubs KW - BEDROCK KW - controls KW - eastern Massachusetts KW - factors KW - fractures KW - ground water KW - Hydrogeology 21 KW - imagery KW - lineaments KW - massachusetts KW - movement KW - New England KW - outcrops KW - Structural geology 16 KW - tectonics KW - tunnels KW - United States AB - As part of the evaluation of the ability of lineaments to map subsurface structures, the coincident lineaments which intersect the tunnel (Curry et al., this volume), were evaluated to isolate those lineaments considered to be "fracture-supported". By definition, fracture-supported coincident lineaments are those which parallel nearby surface fracture sets, mapped faults, lithologic contacts, and/or primary ductile structures; features which may be influential to subsurface groundwater flow. Of the 37 coincident lineaments delineated on the three scales of imagery studied, approximately 70% are considered to be fracture-supported: 9 of the 13 on the 1:58,000 scale images, 10 of 14 on the 1:80,000, and 8 of 10 on the 1:250,000. However, the general lack of surface exposure precludes high confidence in the assignment of fracture-supported status to most lineaments. Large areas devoid of outcrops necessitated extrapolation of regional, surface fracture patterns (domains) to help define some fracture-supported coincident lineaments. There are two occurrences where fracture-supported coincident lineaments from all three scales overlap and are parallel. One occurrence successfully maps the zone of greatest fracture density and highest groundwater inflow (>560 l/min). The other occurrence maps an area of high fracture density and significant subsurface flow (95 l/min). In addition, one other high flow zone (>190 l/min) is mapped by a fracture-supported coincident lineament from the 1:80,000 scale imagery. However, many subsurface fractures and flow zones (<75 l/min) are not mapped by the coincident lineaments regardless of whether or not they are fracture-supported. When considering all fracture-supported coincident lineaments and parallel subsurface structures, the median flow (13,600 l/day) for the mapped structures is greater than the unmapped structures (6,800 liters/day). However, this difference is only significant at the 60% confidence level.Although the tunnel sections with the greatest fracture density and highest groundwater inflows are successfully mapped by fracture supported coincident lineaments, not all water-bearing zones are delineated. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 31 SN - 00167592 IS - 77 N1 - Accession Number: 2001-037344; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - Generic T1 - Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 4, Occurrence and characterization of groundwater inflows T2 - Abstracts with Programs - Geological Society of America Y1 - 1999 A1 - Williams, Katherine W. A1 - Stephen B Mabee A1 - Hardcastle, Kenneth C. A1 - Curry, Patrick J. KW - #StaffPubs KW - BEDROCK KW - boreholes KW - characterization KW - design KW - discharge KW - eastern Massachusetts KW - flows KW - fractures KW - Framingham Quadrangle KW - ground water KW - Hydrogeology 21 KW - massachusetts KW - movement KW - Natik Quadrangle KW - occurrence KW - outcrops KW - surface water KW - topography KW - tunnels KW - United States AB - All occurrences of groundwater inflows in a 9 km long, 5-m diameter section of tunnel, 70 to 90 m below grade, were compared with subsurface fracture density, bedrock topography, surface topography, type of surficial deposits, proximity to surface water bodies, and the geographic distribution (domains; Mabee et al., this volume) of surface and subsurface fractures. Subsurface fracture density was calculated for the 320 fractures (through-going fractures) that intersect the entire circumference of the tunnel. Bedrock topography was determined using bore hole data collected during the design phase of the tunnel project. Surface topography is from 1:25,000 scale topographic maps and surficial geology is based on maps of the Framingham and Natick Quadrangles. Seven surface water bodies, primarily brooks and rivers, overlie the tunnel. Five surface fracture domains are based on 1513 fracture measurements collected from 21 outcrops within 3 km of the tunnel. In the tunnel, 413 fractures (all fractures, dips>45 degrees ) comprise seven subsurface fracture domains. High groundwater inflows generally correlate with areas of high subsurface fracture density and where four or more subsurface fracture domains overlap. In addition, high groundwater inflows are also generally located near surface water bodies and below permeable surficial deposits and topographic depressions, especially those with corresponding lows in the bedrock surface. Moreover, subsurface structures which correlate with prominent surface fracture domains produce the highest volume of groundwater inflow. However, not all tunnel sections exhibiting high fracture density and overlapping fracture domains exhibit high groundwater inflows. Also, there is no correlation between areas where two or more surface fracture domains overlap and the volume of groundwater discharging to the tunnel. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 31 SN - 00167592 IS - 77 N1 - Accession Number: 2001-037345; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - JOUR T1 - Correlation of lineaments to ground water inflows in a bedrock tunnel JF - Ground Water Y1 - 2002 A1 - Stephen B Mabee A1 - Curry, Patrick J. A1 - Hardcastle, Kenneth C. KW - #StaffPubs KW - aquifers KW - BEDROCK KW - construction KW - eastern Massachusetts KW - Engineering geology 30 KW - Framingham Quadrangle KW - ground water KW - hydrodynamics KW - Hydrogeology 21 KW - lineaments KW - massachusetts KW - Middlesex County Massachusetts KW - Natick Quadrangle KW - tectonics KW - tunnels KW - United States AB - Lineaments derived from three image types (1:80,000 black and white, 1:58,000 color infrared, and 1:250,000 side-looking airborne radar) were compared to water-bearing features within a 9.6 km section of tunnel being constructed through foliated crystalline metamorphic bedrock in a glaciated region of eastern Massachusetts. Lineaments drawn by three observers during two independent trials (N = 9137) were reduced to three sets (one per image type) of coincident lineaments (N = 794). Thirty-five coincident lineaments crossed the tunnel. Nineteen discrete flow zones, each producing ≥ 19 L/min, were identified in the tunnel and used to quantify the reliability of lineament analysis as a method of predicting water-bearing features in glaciated metamorphic rocks. Thirteen (68%) of the flow zones correlate with coincident lineaments, six zones correlate with more than one image type, and one zone correlates with all three image types. Overall, without additional corroborating evidence, it is difficult to interpret in advance which lineaments will result in a successful correlation with water-producing zones in the subsurface and which ones will not. Most of the observed flow (80%) correlates with northwest-trending coincident lineaments; however, the majority of the flow (67%) associated with these lineaments is produced from structures that strike to the north or northeast. In addition, only 15 of the 35 coincident lineaments correlate with the flow zones, indicating that 20 lineaments are not associated with any appreciable flow. Six flow zones are undetected by the lineament analysis. PB - National Ground Water Association : Urbana, IL, United States CY - United States VL - 40 SN - 0017467X UR - http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6584.2002.tb02489.x/abstract IS - 11 N1 - Accession Number: 2002-016666; Language: English; Coordinates: N420800N422800W0714300W0715300; Coden: GRWAAP; Collation: 7; Publication Types: Serial; Updated Code: 200206; Illustration(s): illus. incl. 6 tables, sketch map; Number of References: 38; Reviewed Item: Analytic JO - Ground Water ER -