TY - Generic T1 - Evidence for arsenic-mineralization in granitic basement rocks, Ayer Granodiorite, northeastern Massachusetts T2 - Abstracts with Programs - Geological Society of America Y1 - 2010 A1 - Koteas, G. Christopher A1 - Keskula, Anna J. A1 - Stein, Carol L. A1 - McTigue, David F. A1 - Joseph P Kopera A1 - Brandon, William C. KW - #StaffPubs KW - acadian KW - arsenic KW - arsenides KW - arsenopyrite KW - Ayer Granodiorite KW - Berwick formation KW - fractured materials KW - geochemistry KW - granodiorites KW - Igneous and metamorphic petrology 05A KW - igneous rocks KW - lower Paleozoic KW - massachusetts KW - Merrimack Synclinorium KW - metals KW - metamorphic rocks KW - metamorphism KW - metasedimentary rocks KW - metasomatism KW - Middlesex County Massachusetts KW - migration of elements KW - mineralization KW - Mineralogy of non-silicates 01C KW - northeastern Massachusetts KW - orogeny KW - Paleozoic KW - plutonic rocks KW - pollutants KW - pollution KW - pyrite KW - sulfides KW - United States AB - Core samples of the Ayer Granodiorite along the eastern margin of the Merrimack Belt in northeastern Massachusetts host a series of sulfide and oxide phases that resulted from interaction with sulfide-bearing meta-sedimentary host rocks. Euhedral arsenopyrite grains are found with ilmenite, apatite, and REE phosphates in zones that generally mimic the intersection between a gneissic fabric and a relict magmatic foliation. Arsenopyrite crystals are typically elongate with this lineation. Euhedral to subhedral pyrite crystals have also been observed, but are localized to areas without As-bearing phases. Micro-fractures that parallel either a steep NW-striking joint set or gently-dipping sheeting joints are commonly filled with interwoven calcite cements and As-bearing Fe-oxides. Surface coatings of major fracture sets are also characterized by Fe-As-rich rinds that host micron-scale sub-angular particles of quartz, feldspars, and phyllosilicates. Where micro-fractures are most concentrated, sulfide-bearing minerals are less common; however, subhedral to anhedral arsenopyrite grains do occur along some open micro-fractures. These crystals preserve lobate grain boundaries and are associated with As-bearing Fe-oxide-rich coatings along adjacent fractures. The presence of 1) pyrite, 2) arsenopyrite associated with phosphates, and 3) As-bearing fracture coatings suggests multiple stages of mineralization. We propose that intrusion-related fluid-rock interaction associated with heating of nearby sulfide-bearing schists of the Berwick Formation during Acadian orogenesis may have provided the necessary constituents for growth of sulfide phases in the Ayer. It appears that Late Devonian greenschist facies metamorphism and metasomatism led to mineralization that generated arsenopyrite and accompanying phosphates; however, the role of the cross-cutting Clinton Newbury Fault Zone as a conduit for hydrothermal fluids may also be important. Lower temperature As-bearing Fe-oxide and calcite coatings on open fractures surfaces may be associated with a change from lithostatic- to hydrostatic-pressures during post-glacial regional uplift. This mineralization appears to be synchronous with intense microfracturing that post-dates all other mineralization. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 42 SN - 00167592 UR - https://gsa.confex.com/gsa/2010NE/finalprogram/abstract_169998.htm IS - 11 N1 - Accession Number: 2010-100047; Conference Name: Geological Society of America, Northeastern Section, 45th annual meeting; Geological Society of America, Southeastern Section, 59th annual meeting; Baltimore, MD, United States; Conference Date: 20100314; Language: English; Coordinates: N420800N424400W0710200W0715300; Coden: GAAPBC; Collation: 1; Collation: 160; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201052; Monograph Title: Geological Society of America, Northeastern Section, 45th annual meeting; Geological Society of America, Southeastern Section, 59th annual meeting; joint meeting, abstracts volume; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - Generic T1 - Field mapping and fracture characterization techniques predict groundwater preferential flow paths in fractured bedrock aquifers, Nashoba Terrane, MA T2 - AGU Fall Conference, 2005 Y1 - 2005 A1 - Alex K Manda A1 - Stephen B Mabee A1 - Hubbs, S. A. KW - #StaffPubs KW - aquifers KW - BEDROCK KW - characterization KW - fractured materials KW - fractures KW - ground water KW - Hydrogeology 21 KW - mapping KW - massachusetts KW - Middlesex County Massachusetts KW - movement KW - Nashoba terrane KW - patterns KW - preferential flow KW - recharge KW - reservoir properties KW - substrates KW - United States AB - A study examining the relationship between fracture characteristics and groundwater was undertaken in the crystalline Nashoba Terrane of eastern Massachusetts. The Nashoba Terrane, a fault-bounded, highly deformed sliver of Paleozoic igneous and metamorphic rocks, covers an area of 600 sq km about 50 km northwest of Boston. Increasing industrial development coupled with population growth place significant pressure on developers to provide sufficient potable water for the population. To aid water development and management, this study examined fracture characteristics at regional, quadrangle and wellfield scales. The regional-scale work involved recording over 4000 structural measurements from 80 outcrops in the terrane. Fracture information recorded at each data station included strike and dip, trace length, spacing, termination, and fracture type. Preliminary results show that hydrostructural domains can be defined from combinations of fracture characterization and rock types. These domains are used to conceptualize general groundwater flow patterns in the subsurface: steeply dipping fractures, such as partings parallel to foliation enhance recharge potential and impose strong flow anisotropy. A different character is observed if steeply dipping joints intersect sheeting joints. In this instance, both recharge and lateral flow will be enhanced and flow anisotropy will be reduced. The distribution and intensity of particular fracture sets varies as a function of rock type, proximity to major features and local stress states. Partings parallel to foliation are prevalent in gneissic rocks whereas sheeting joints are more common in igneous rocks. Common joints are the most prevalent fractures, present in all rock types across the entire terrane. Quadrangle and wellfield scale data can be used to validate the regional-scale conceptual models. A comprehensive well-yield database was created to test the proposed models. Over 500 water wells in the terrane were evaluated to determine regions with high and low yield. The findings were evaluated in terms of location with respect to newly defined hydrostructural domain maps at both regional and quadrangle scales. Application of these hydrostructural domains in field studies can be useful not only in characterizing fracture intensity and distribution, but can shed more light on the potential of intersecting subsurface zones that could be exploited for economic gain. JF - AGU Fall Conference, 2005 PB - American Geophysical Union : Washington, DC, United States CY - United States VL - 86 SN - 00963941 IS - 52, Suppl.52, Suppl. N1 - Accession Number: 2009-053313; Conference Name: American Geophysical Union 2005 fall meeting; San Francisco, CA, United States; Conference Date: 20051205; Language: English; Coordinates: N420800N424400W0710200W0715300; Coden: EOSTAJ; Collation: -1; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200930; Monograph Title: AGU 2005 fall meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Eos, Transactions, American Geophysical Union ER - TY - Generic T1 - Fracture characterization of crystalline bedrock for groundwater investigations; an example from the Marlborough Quadrangle, Massachusetts T2 - Abstracts with Programs - Geological Society of America Y1 - 2004 A1 - Scott A Salamoff A1 - Stephen B Mabee A1 - Joseph P Kopera A1 - Donald U Wise KW - #StaffPubs KW - aquifers KW - Assabet River Fault KW - BEDROCK KW - characterization KW - controls KW - crystalline rocks KW - fractured materials KW - fractures KW - geographic information systems KW - ground water KW - Hydrogeology 21 KW - hydrology KW - information systems KW - joints KW - Marlborough Quadrangle KW - massachusetts KW - Middlesex County Massachusetts KW - permeability KW - preferential flow KW - recharge KW - style KW - testing KW - theoretical models KW - United States AB - Integration of a wide array of structural data with well-field hydrologic testing is increasingly recognized as a critical step in understanding groundwater flow behavior and recharge in crystalline bedrock aquifers (Lyford et al., 2003, Walsh and Lyford, 2002). The Marlborough Quadrangle, about 40 km west of Boston, was selected as a test case of how a state geological survey can most effectively and efficiently collect and present such data in order to better constrain conceptual models of groundwater flow in general and to be of maximum use for hydrologists and consultants working on specific local problems. In this study, 3200 structural measurements were taken by a two-person team over a nine-week period at 68 stations distributed throughout the quadrangle and keyed into a GIS database. Specialized data sheets allowed efficient recording and digitization of orientations, lengths, spacing and mineralization, and separation of various classes of joints and veins. Fault data also included motion direction and sense. Summary maps in GIS format include standard geologic map bases overlain by typical rose diagrams and stereograms and maps such as fracture domains and trajectories, sheeting distribution, foliation trajectories, bedrock elevations, generalized piezometric surface configuration, and overburden type and thickness with separations into permeability class. Geology of the quadrangle can be separated into three zones: (a) north of the Assabet River Fault (ARF), (b) the area between the ARF and 1.5 km-wide Bloody Bluff Fault Zone (BBFZ), and (c) south of the BBFZ. Generalized foliations in the zones are: (a) 215, 50N, (b) 240, 65N, and (c) 270, 45N. Two pervasive, steeply-dipping (>60 degrees ) fracture sets occur throughout the quadrangle: an older 150 degrees set that includes sulfide-bearing veins and fracture surfaces along the ARF and a 015 degrees set of largely unmineralized common joints, macrojoints (>3 m length) and joint zones (av. 1.2 m width). Sheeting and unloading joints are generally coincident with shallow dipping foliation in (c) but cross-cut foliation in (a) and (b). We believe this approach will provide hydrologists and consultants with basic framework data that will expedite and improve the planning of subsurface investigations, construction activities and groundwater exploration. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 36 SN - 00167592 UR - https://gsa.confex.com/gsa/2004NE/finalprogram/abstract_70321.htm IS - 22 N1 - Accession Number: 2005-077195; Conference Name: Geological Society of America, Northeastern Section, 38th annual meeting; Geological Society of America, Southeastern Section, 53rd annual meeting; Washington, DC, United States; Conference Date: 20040325; Language: English; Coordinates: N421800N421800W0713000W0713000; Coden: GAAPBC; Collation: 1; Collation: 113; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200524; Monograph Title: Geological Society of America, Northeastern Section, 38th annual meeting; Geological Society of America, Southeastern Section, 53rd annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - JOUR T1 - Correlation of lineaments to ground water inflows in a bedrock tunnel JF - Ground Water Y1 - 2002 A1 - Stephen B Mabee A1 - Curry, Patrick J. A1 - Hardcastle, Kenneth C. KW - #StaffPubs KW - aquifers KW - BEDROCK KW - construction KW - eastern Massachusetts KW - Engineering geology 30 KW - Framingham Quadrangle KW - ground water KW - hydrodynamics KW - Hydrogeology 21 KW - lineaments KW - massachusetts KW - Middlesex County Massachusetts KW - Natick Quadrangle KW - tectonics KW - tunnels KW - United States AB - Lineaments derived from three image types (1:80,000 black and white, 1:58,000 color infrared, and 1:250,000 side-looking airborne radar) were compared to water-bearing features within a 9.6 km section of tunnel being constructed through foliated crystalline metamorphic bedrock in a glaciated region of eastern Massachusetts. Lineaments drawn by three observers during two independent trials (N = 9137) were reduced to three sets (one per image type) of coincident lineaments (N = 794). Thirty-five coincident lineaments crossed the tunnel. Nineteen discrete flow zones, each producing ≥ 19 L/min, were identified in the tunnel and used to quantify the reliability of lineament analysis as a method of predicting water-bearing features in glaciated metamorphic rocks. Thirteen (68%) of the flow zones correlate with coincident lineaments, six zones correlate with more than one image type, and one zone correlates with all three image types. Overall, without additional corroborating evidence, it is difficult to interpret in advance which lineaments will result in a successful correlation with water-producing zones in the subsurface and which ones will not. Most of the observed flow (80%) correlates with northwest-trending coincident lineaments; however, the majority of the flow (67%) associated with these lineaments is produced from structures that strike to the north or northeast. In addition, only 15 of the 35 coincident lineaments correlate with the flow zones, indicating that 20 lineaments are not associated with any appreciable flow. Six flow zones are undetected by the lineament analysis. PB - National Ground Water Association : Urbana, IL, United States CY - United States VL - 40 SN - 0017467X UR - http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6584.2002.tb02489.x/abstract IS - 11 N1 - Accession Number: 2002-016666; Language: English; Coordinates: N420800N422800W0714300W0715300; Coden: GRWAAP; Collation: 7; Publication Types: Serial; Updated Code: 200206; Illustration(s): illus. incl. 6 tables, sketch map; Number of References: 38; Reviewed Item: Analytic JO - Ground Water ER -