TY - Generic T1 - Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 2, Fracture-supported coincident lineaments and subsurface structures T2 - Abstracts with Programs - Geological Society of America Y1 - 1999 A1 - Hardcastle, Kenneth C. A1 - Curry, Patrick J. A1 - Williams, Katherine W. A1 - Stephen B Mabee KW - #StaffPubs KW - BEDROCK KW - controls KW - eastern Massachusetts KW - factors KW - fractures KW - ground water KW - Hydrogeology 21 KW - imagery KW - lineaments KW - massachusetts KW - movement KW - New England KW - outcrops KW - Structural geology 16 KW - tectonics KW - tunnels KW - United States AB - As part of the evaluation of the ability of lineaments to map subsurface structures, the coincident lineaments which intersect the tunnel (Curry et al., this volume), were evaluated to isolate those lineaments considered to be "fracture-supported". By definition, fracture-supported coincident lineaments are those which parallel nearby surface fracture sets, mapped faults, lithologic contacts, and/or primary ductile structures; features which may be influential to subsurface groundwater flow. Of the 37 coincident lineaments delineated on the three scales of imagery studied, approximately 70% are considered to be fracture-supported: 9 of the 13 on the 1:58,000 scale images, 10 of 14 on the 1:80,000, and 8 of 10 on the 1:250,000. However, the general lack of surface exposure precludes high confidence in the assignment of fracture-supported status to most lineaments. Large areas devoid of outcrops necessitated extrapolation of regional, surface fracture patterns (domains) to help define some fracture-supported coincident lineaments. There are two occurrences where fracture-supported coincident lineaments from all three scales overlap and are parallel. One occurrence successfully maps the zone of greatest fracture density and highest groundwater inflow (>560 l/min). The other occurrence maps an area of high fracture density and significant subsurface flow (95 l/min). In addition, one other high flow zone (>190 l/min) is mapped by a fracture-supported coincident lineament from the 1:80,000 scale imagery. However, many subsurface fractures and flow zones (<75 l/min) are not mapped by the coincident lineaments regardless of whether or not they are fracture-supported. When considering all fracture-supported coincident lineaments and parallel subsurface structures, the median flow (13,600 l/day) for the mapped structures is greater than the unmapped structures (6,800 liters/day). However, this difference is only significant at the 60% confidence level.Although the tunnel sections with the greatest fracture density and highest groundwater inflows are successfully mapped by fracture supported coincident lineaments, not all water-bearing zones are delineated. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 31 SN - 00167592 IS - 77 N1 - Accession Number: 2001-037344; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - Generic T1 - Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 3, Surface vs. subsurface fracture characteristics T2 - Abstracts with Programs - Geological Society of America Y1 - 1999 A1 - Stephen B Mabee A1 - Williams, Katherine W. A1 - Curry, Patrick J. A1 - Hardcastle, Kenneth C. KW - #StaffPubs KW - BEDROCK KW - controls KW - eastern Massachusetts KW - factors KW - fractures KW - ground water KW - Hydrogeology 21 KW - massachusetts KW - measurement KW - movement KW - New England KW - outcrops KW - spatial distribution KW - tunnels KW - United States AB - Major fracture sets (dip >45 degrees ), their geographic distributions (domains), and their characteristics (spacing, trace length, and planarity) were measured in surface outcrops and in a 9 km section of the tunnel (Curry et al., this volume) to determine how well fracture data collected at widely-spaced surface exposures can be extrapolated to a depth of 70 to 90 meters. For the surface fracture data set, fracture sets and domains were determined from 1513 measurements collected at 21 outcrops located within 3 km of the trace of the tunnel. Spacing, trace length, and planarity were determined from scanline measurements (n = 899). For the tunnel data set, 413 fracture measurements were made to determine major sets and domains and a smaller subset (n = 156) was used to estimate fracture characteristics.Five fracture sets (14, 38, 86, 117, and 171) were identified in the outcrops and seven sets (13, 29, 41, 62, 132, 159, and 175) in the tunnel. The 14 and 171 sets correspond well with the 13 and 175 sets in the tunnel. The 38 set observed at the surface includes parts of the 29 and 41 sets in the tunnel. The 86 set does occur in the tunnel but is undersampled because it is aligned with the tunnel. The 62 and 159 sets occur in the tunnel but are not seen at the surface. Although large areas are devoid of outcrops, comparison of surface and subsurface fracture domains indicates that only the 14 and 171 sets show a reasonable overlap with the 13 and 175 domains in the tunnel. These latter sets are the fractures generating most of the groundwater inflow into the tunnel. Median fracture spacing and trace lengths for the 13 and 175 sets in the tunnel are significantly wider and longer than the corresponding 14 and 171 sets at the surface. Fracture planarities showed no significant differences between any of the surface and subsurface fracture sets. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 31 SN - 00167592 IS - 77 N1 - Accession Number: 2001-037340; Conference Name: Geological Society of America, 1999 annual meeting; Denver, CO, United States; Conference Date: 19991025; Language: English; Coden: GAAPBC; Collation: 1; Collation: 348; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200111; Monograph Title: Geological Society of America, 1999 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - Generic T1 - Fracture characterization of crystalline bedrock for groundwater investigations; an example from the Marlborough Quadrangle, Massachusetts T2 - Abstracts with Programs - Geological Society of America Y1 - 2004 A1 - Scott A Salamoff A1 - Stephen B Mabee A1 - Joseph P Kopera A1 - Donald U Wise KW - #StaffPubs KW - aquifers KW - Assabet River Fault KW - BEDROCK KW - characterization KW - controls KW - crystalline rocks KW - fractured materials KW - fractures KW - geographic information systems KW - ground water KW - Hydrogeology 21 KW - hydrology KW - information systems KW - joints KW - Marlborough Quadrangle KW - massachusetts KW - Middlesex County Massachusetts KW - permeability KW - preferential flow KW - recharge KW - style KW - testing KW - theoretical models KW - United States AB - Integration of a wide array of structural data with well-field hydrologic testing is increasingly recognized as a critical step in understanding groundwater flow behavior and recharge in crystalline bedrock aquifers (Lyford et al., 2003, Walsh and Lyford, 2002). The Marlborough Quadrangle, about 40 km west of Boston, was selected as a test case of how a state geological survey can most effectively and efficiently collect and present such data in order to better constrain conceptual models of groundwater flow in general and to be of maximum use for hydrologists and consultants working on specific local problems. In this study, 3200 structural measurements were taken by a two-person team over a nine-week period at 68 stations distributed throughout the quadrangle and keyed into a GIS database. Specialized data sheets allowed efficient recording and digitization of orientations, lengths, spacing and mineralization, and separation of various classes of joints and veins. Fault data also included motion direction and sense. Summary maps in GIS format include standard geologic map bases overlain by typical rose diagrams and stereograms and maps such as fracture domains and trajectories, sheeting distribution, foliation trajectories, bedrock elevations, generalized piezometric surface configuration, and overburden type and thickness with separations into permeability class. Geology of the quadrangle can be separated into three zones: (a) north of the Assabet River Fault (ARF), (b) the area between the ARF and 1.5 km-wide Bloody Bluff Fault Zone (BBFZ), and (c) south of the BBFZ. Generalized foliations in the zones are: (a) 215, 50N, (b) 240, 65N, and (c) 270, 45N. Two pervasive, steeply-dipping (>60 degrees ) fracture sets occur throughout the quadrangle: an older 150 degrees set that includes sulfide-bearing veins and fracture surfaces along the ARF and a 015 degrees set of largely unmineralized common joints, macrojoints (>3 m length) and joint zones (av. 1.2 m width). Sheeting and unloading joints are generally coincident with shallow dipping foliation in (c) but cross-cut foliation in (a) and (b). We believe this approach will provide hydrologists and consultants with basic framework data that will expedite and improve the planning of subsurface investigations, construction activities and groundwater exploration. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 36 SN - 00167592 UR - https://gsa.confex.com/gsa/2004NE/finalprogram/abstract_70321.htm IS - 22 N1 - Accession Number: 2005-077195; Conference Name: Geological Society of America, Northeastern Section, 38th annual meeting; Geological Society of America, Southeastern Section, 53rd annual meeting; Washington, DC, United States; Conference Date: 20040325; Language: English; Coordinates: N421800N421800W0713000W0713000; Coden: GAAPBC; Collation: 1; Collation: 113; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200524; Monograph Title: Geological Society of America, Northeastern Section, 38th annual meeting; Geological Society of America, Southeastern Section, 53rd annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - Generic T1 - Implications of diurnal river fluctuations on mass transport in a valley-fill aquifer T2 - Abstracts with Programs - Geological Society of America Y1 - 2006 A1 - Brandon J Fleming A1 - David F Boutt A1 - Stephen B Mabee KW - #StaffPubs KW - aquifers KW - BEDROCK KW - clastic sediments KW - controls KW - diffusion KW - diurnal variations KW - drainage KW - drift KW - Eastern U.S. KW - Environmental geology 22 KW - floods KW - fluctuations KW - geochemical cycle KW - geologic hazards KW - ground water KW - measurement KW - mixing KW - models KW - Northeastern U.S. KW - numerical models KW - nutrients KW - pollution KW - processes KW - pumping KW - quantitative analysis KW - residence time KW - sediments KW - shallow aquifers KW - surface water KW - three-dimensional models KW - tracers KW - transport KW - United States KW - valleys KW - water pollution KW - water resources KW - water wells AB - Aquifers located in isolated stratified drift deposits in the northeastern portion of the US are extremely fragile and important groundwater resources. These aquifers, when restricted to bedrock valleys, are often strongly coupled to significant surface water drainage systems. In northwestern Massachusetts, surface water associated with the Deerfield River watershed is highly regulated by dams to protect against flooding and to generate hydroelectric power. Regular releases of water from these dams cause diurnal fluctuations in river stage. In a previous study performed by the USGS, measurements from two clusters of wells show a significant response to river stage fluctuations in the aquifer. Fluctuations in river stage and resulting changes in head levels in the aquifer cause a switch from a losing to a gaining stream. The flow reversals have implications for mass transport and nutrient cycling within the hyporheic zone. In this paper we investigate the physical hydrologic controls on mass transport in the shallow aquifer. Using a coupled groundwater flow and transport code, we built a quasi three dimensional transient numerical model to approximate the head changes in the aquifer caused by the stage fluctuations in the river. Flow velocities and residence times were estimated in the aquifer for a variety of flow conditions. The mixing process driven by the aquifer head changes were quantified in the proximity of the hyporheic zone and shown to significantly influence both vertical and horizontal flow velocities in a region close to the stream-aquifer boundary. The diurnal river stage changes also appear to influence farfield hydrologic conditions and potentially hydrologically isolate the river and hyporheic zone. To further investigate these mixing processes we applied a mass transport code with conservative tracers to the aquifer. Fluctuation of the river stage combined with the heterogeneous nature of the aquifer creates a pumping mechanism that creates excess mixing within shallow portions of the aquifer. Aquifer dispersivity and molecular diffusion both contribute to the anomalous mixing modeled in the shallow aquifer. Mixing driven by stream stage changes has important implications for nutrient cycling as well as contaminant transport in the shallow aquifer. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 38 SN - 00167592 UR - https://gsa.confex.com/gsa/2006AM/finalprogram/abstract_115285.htm IS - 77 N1 - Accession Number: 2010-061334; Conference Name: Geological Society of America, 2006 annual meeting; Philadelphia, PA, United States; Conference Date: 20061022; Language: English; Coden: GAAPBC; Collation: 1; Collation: 468; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 201034; Monograph Title: Geological Society of America, 2006 annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - JOUR T1 - Factors influencing well productivity in glaciated metamorphic rocks JF - Ground Water Y1 - 1999 A1 - Stephen B Mabee KW - #StaffPubs KW - aquifers KW - BEDROCK KW - controls KW - depth KW - drinking water KW - fractures KW - Georgetown Island KW - glacial environment KW - ground water KW - Hydrogeology 21 KW - Maine KW - metamorphic rocks KW - porosity KW - surface water KW - thickness KW - topography KW - transmissivity KW - United States KW - water wells PB - National Water Well Association, Ground-Water Technology Division : Urbana, IL, United States CY - United States VL - 37 SN - 0017467X UR - http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6584.1999.tb00961.x/abstract IS - 11 N1 - Accession Number: 1999-037034; Language: English; Coden: GRWAAP; Collation: 10; Publication Types: Serial; Updated Code: 199913; Illustration(s): illus. incl. 7 tables, geol. sketch map; Number of References: 37; Reviewed Item: Analytic JO - Ground Water ER -