TY - Generic T1 - Fracture characterization of crystalline bedrock for groundwater investigations; an example from the Marlborough Quadrangle, Massachusetts T2 - Abstracts with Programs - Geological Society of America Y1 - 2004 A1 - Scott A Salamoff A1 - Stephen B Mabee A1 - Joseph P Kopera A1 - Donald U Wise KW - #StaffPubs KW - aquifers KW - Assabet River Fault KW - BEDROCK KW - characterization KW - controls KW - crystalline rocks KW - fractured materials KW - fractures KW - geographic information systems KW - ground water KW - Hydrogeology 21 KW - hydrology KW - information systems KW - joints KW - Marlborough Quadrangle KW - massachusetts KW - Middlesex County Massachusetts KW - permeability KW - preferential flow KW - recharge KW - style KW - testing KW - theoretical models KW - United States AB - Integration of a wide array of structural data with well-field hydrologic testing is increasingly recognized as a critical step in understanding groundwater flow behavior and recharge in crystalline bedrock aquifers (Lyford et al., 2003, Walsh and Lyford, 2002). The Marlborough Quadrangle, about 40 km west of Boston, was selected as a test case of how a state geological survey can most effectively and efficiently collect and present such data in order to better constrain conceptual models of groundwater flow in general and to be of maximum use for hydrologists and consultants working on specific local problems. In this study, 3200 structural measurements were taken by a two-person team over a nine-week period at 68 stations distributed throughout the quadrangle and keyed into a GIS database. Specialized data sheets allowed efficient recording and digitization of orientations, lengths, spacing and mineralization, and separation of various classes of joints and veins. Fault data also included motion direction and sense. Summary maps in GIS format include standard geologic map bases overlain by typical rose diagrams and stereograms and maps such as fracture domains and trajectories, sheeting distribution, foliation trajectories, bedrock elevations, generalized piezometric surface configuration, and overburden type and thickness with separations into permeability class. Geology of the quadrangle can be separated into three zones: (a) north of the Assabet River Fault (ARF), (b) the area between the ARF and 1.5 km-wide Bloody Bluff Fault Zone (BBFZ), and (c) south of the BBFZ. Generalized foliations in the zones are: (a) 215, 50N, (b) 240, 65N, and (c) 270, 45N. Two pervasive, steeply-dipping (>60 degrees ) fracture sets occur throughout the quadrangle: an older 150 degrees set that includes sulfide-bearing veins and fracture surfaces along the ARF and a 015 degrees set of largely unmineralized common joints, macrojoints (>3 m length) and joint zones (av. 1.2 m width). Sheeting and unloading joints are generally coincident with shallow dipping foliation in (c) but cross-cut foliation in (a) and (b). We believe this approach will provide hydrologists and consultants with basic framework data that will expedite and improve the planning of subsurface investigations, construction activities and groundwater exploration. JF - Abstracts with Programs - Geological Society of America PB - Geological Society of America (GSA) : Boulder, CO, United States CY - United States VL - 36 SN - 00167592 UR - https://gsa.confex.com/gsa/2004NE/finalprogram/abstract_70321.htm IS - 22 N1 - Accession Number: 2005-077195; Conference Name: Geological Society of America, Northeastern Section, 38th annual meeting; Geological Society of America, Southeastern Section, 53rd annual meeting; Washington, DC, United States; Conference Date: 20040325; Language: English; Coordinates: N421800N421800W0713000W0713000; Coden: GAAPBC; Collation: 1; Collation: 113; Publication Types: Abstract Only; Serial; Conference document; Updated Code: 200524; Monograph Title: Geological Society of America, Northeastern Section, 38th annual meeting; Geological Society of America, Southeastern Section, 53rd annual meeting; Monograph Author(s): Anonymous; Reviewed Item: Analytic JO - Abstracts with Programs - Geological Society of America ER - TY - JOUR T1 - Implications of anthropogenic river stage fluctuations on mass transport in a valley fill aquifer JF - Water Resources Research Y1 - 2009 A1 - David F Boutt A1 - Brandon J Fleming KW - #Hydro KW - #WaterResources KW - aquifers KW - boundary conditions KW - Charlemont KW - Deerfield River basin KW - fluctuations KW - fluvial features KW - Franklin County Massachusetts KW - ground water KW - human activity KW - Hydrogeology 21 KW - hydrology KW - massachusetts KW - numerical models KW - preferential flow KW - rivers KW - shallow aquifers KW - streams KW - surface water KW - transport KW - two-dimensional models KW - United States KW - valleys AB - In humid regions a strong coupling between surface water features and groundwater systems may exist. In these environments the exchange of water and solute depends primarily on the hydraulic gradient between the reservoirs. We hypothesize that daily changes in river stage associated with anthropogenic water releases (such as those from a hydroelectric dam) cause anomalous mixing in the near-stream environment by creating large hydraulic head gradients between the stream and adjacent aquifer. We present field observations of hydraulic gradient reversals in a shallow aquifer. Important physical processes observed in the field are explicitly reproduced in a physically based two-dimensional numerical model of groundwater flow coupled to a simplistic surface water boundary condition. Mass transport simulations of a conservative solute introduced into the surface water are performed and examined relative to a stream condition without stage fluctuations. Simulations of 20 d for both fluctuating river stage and fixed high river stage show that more mass is introduced into the aquifer from the stream in the oscillating case even though the net water flux is zero. Enhanced transport by mechanical dispersion leads to mass being driven away from the hydraulic zone of influence of the river. The modification of local hydraulic gradients is likely to be important for understanding dissolved mass transport in near-stream aquifer environments and can influence exchange zone processes under conditions of high-frequency stream stage changes. PB - American Geophysical Union : Washington, DC, United States VL - 45 SN - 0043139719447973 UR - http://onlinelibrary.wiley.com/doi/10.1029/2007WR006526/full IS - 44 JO - Water Resources Research ER - TY - Generic T1 - Virtual Courseware - online activities related to earthquakes, global warming, hydrology, and geologic dating Y1 - KW - #EducationalResources KW - #SubjectResources KW - activities KW - classroom KW - curricula KW - earth science KW - earthquakes KW - education KW - geochronology KW - geologic dating KW - global warming KW - hydrology KW - K-12 KW - lesson plans KW - plate tectonics KW - schools KW - standards KW - teacher resources KW - teaching AB - The Virtual Courseware Project produces interactive, online simulations for the life science laboratory or for earth science field studies. The activities are designed to enhance an existing curriculum and include online assessments. They can be used by students ranging from middle school, high school, or college classrooms PB - California State University UR - http://www.sciencecourseware.com/ ER -