%0 Book %B U.S. Geological Survey Professional Paper %D 1988 %T The bedrock geology of Massachusetts %A Hatch, Norman L %A Goldsmith, Richard %A Robinson, P %A Stanley, Rolfe S %A Wones, David R %A Zartman, Robert E %A Marvin, Richard F %K #MassGeology %K #MassGeologyMap %K #StateGeologicMap %K bedrock map %K GEOLOGIC MAP %K Goldsmith %K Hatch %K Hatch 1991 %K State Geologic Map %K Zen %K Zen 1983 %X USGS Professional Paper 1366 A-D & E-J: Books accompanying the 1983 State Bedrock Geologic Map, edited by Norman L. Hatch. Paper copies can be ordered via the USGS store (http://store.usgs.gov) using the USGS product numbers above or by clicking the links below. %B U.S. Geological Survey Professional Paper %I United States Geological Survey %C Reston, VA %V 1366 %G eng %6 2 %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1998 %T Comparison of lineaments with bedrock structures along a cross-strike transect, eastern Massachusetts %A Curry, Patrick J. %A Williams, Katherine W. %A Stephen B Mabee %A Hardcastle, Kenneth C. %K #StaffPubs %K aerial photography %K BEDROCK %K eastern Massachusetts %K faults %K geophysical surveys %K imagery %K lineaments %K massachusetts %K remote sensing %K SLAR %K Structural geology 16 %K surveys %K tectonics %K United States %X Lineament data derived from three platforms, 1:58,000 color infrared photography (N = 770), 1:80,000 black and white photographs (N = 1106), and 1:250,000 SLAR imagery (N = 521), were used to determine the degree of coincidence between mapped faults and lineaments along a cross strike transect in eastern Massachusetts. The study area extends 27 km in an east-west direction and 8 km north-south and is located along the trace of a tunnel currently being constructed approximately 90 m below grade. Structural data are presently being collected from surface exposures along the tunnel trace and from within the 5 m diameter tunnel bore. These structural data will be compared with lineament data in the future. Reported here are the results of a comparison between the locations of lineaments and the position of major faults mapped on the Bedrock Geologic Map of Massachusetts (1:250,000). Lineaments were first mapped on acetate overlays in two independent trials and compared to determine which lineaments could be reproduced at the same geographic location. Reproducibility results indicate that 21 to 33% of the lineaments can be reproduced at the same spatial position and are comparable to results obtained from other studies. The length of reproducible lineaments proximal to and approximately parallel with mapped faults was compared with the total length of faults (137 km) within the study area. Results show that a small percentage of the faults are coincident with reproducible lineaments. Three percent of the lengths are mapped by reproducible lineaments observed on the SLAR imagery, 7% by the 1:80,000 scale photographs, and 5% by the 1:58,000 color infrared photography. This indicates that 97%, 93%, and 95% of the reproducible lineaments, respectively, are related to other geologic features in the bedrock or nothing at all. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 30 %P 278 - 278 %8 1998/01/01/ %@ 00167592 %G eng %N 77 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 2001 %T Correlation of lineaments to ground water inflows in the MWRA tunnel %A Stephen B Mabee %A Curry, Patrick J. %A Hardcastle, Kenneth C. %K #StaffPubs %K black and white %K construction %K correlation %K eastern Massachusetts %K Engineering geology 30 %K experimental studies %K flow rates %K geophysical methods %K ground water %K infrared methods %K lineaments %K mapping %K massachusetts %K metamorphic rocks %K methods %K movement %K photogeology %K radar methods %K remote sensing %K SLAR %K tectonics %K tunnels %K United States %X Lineaments derived from three image types (1:80,000 black and white (BW), 1:58,000 color infrared (CIR), and 1:250,000 side-looking airborne radar (SLAR)) were compared to water-bearing features within a 9.6 km section of tunnel being constructed through foliated crystalline metamorphic bedrock in a glaciated region of eastern Massachusetts. Lineaments drawn by three observers during two independent trials (N = 9137) were reduced to three sets (one per image type) of coincident lineaments (N = 794). Thirty-five coincident lineaments crossed the tunnel. Nineteen discrete flow zones, each producing less than or equal to 19 L/min, were identified in the tunnel and used to quantify the reliability of lineament analysis as a method of predicting water-bearing features in glaciated metamorphic rocks. Thirteen (68%) of the flow zones correlate with coincident lineaments, six zones correlate with more than one image type, and one zone correlates with all three image types. Overall, it is difficult to distinguish lineaments that will be successful in predicting water-bearing zones from those that will be unsuccessful without considering other corroborating evidence. Most of the observed flow (80%) correlates with northwest-trending coincident lineaments. However, the majority of the flow (67%) associated with these lineaments is produced from structures that strike to the north or northeast. In addition, only fifteen of the thirty-five coincident lineaments correlate with the flow zones indicating that twenty lineaments are not associated with any appreciable flow. Six flow zones are undetected by the lineament analysis. In this study, BW lineaments are able distinguish high-yield through-going structures (at the 90% confidence level) with greater reliability than the SLAR or CIR lineaments. However, linking bedrock type, overburden type, topographic position, and proximity to surface water bodies with lineament analysis improves the predictive capability of the lineament method. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 33 %P 114 - 115 %8 2001/11/01/ %@ 00167592 %G eng %U https://gsa.confex.com/gsa/2001AM/finalprogram/abstract_22810.htm %N 66 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Proceedings of the National Symposium on Aquifer Restoration and Ground-Water Monitoring %D 1983 %T A cost-effective technique for reconnaissance evaluation of aquifers %A Heeley, Richard W. %A Stephen B Mabee %K #StaffPubs %K aquifers %K case studies %K economics %K evaluation %K Groton %K ground water %K hydrogeology %K Hydrogeology 21 %K Mashpee %K massachusetts %K methods %K monitoring wells %K Newton %K pollution %K pump tests %K specific capacity %K surveys %K transmissivity %K United States %K waste disposal %K water resources %K water supply %K water wells %K wells %K Westford %B Proceedings of the National Symposium on Aquifer Restoration and Ground-Water Monitoring %I National Water Well Association : Worthington, OH, United States %C United States %V 3 %P 213 - 219 %8 1983/01/01/ %@ 07499515 %G eng %U https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CDgQFjAD&url=http%3A%2F%2Fuwyo.coalliance.org%2Fislandora%2Fobject%2Fwyu%253A10425%2Fdatastream%2FOBJ%2Fdownload%2FProceedings_Of_The_Third_National_Symposium_On_Aquifer_R %! Proceedings of the National Symposium on Aquifer Restoration and Ground-Water Monitoring %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1999 %T Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 2, Fracture-supported coincident lineaments and subsurface structures %A Hardcastle, Kenneth C. %A Curry, Patrick J. %A Williams, Katherine W. %A Stephen B Mabee %K #StaffPubs %K BEDROCK %K controls %K eastern Massachusetts %K factors %K fractures %K ground water %K Hydrogeology 21 %K imagery %K lineaments %K massachusetts %K movement %K New England %K outcrops %K Structural geology 16 %K tectonics %K tunnels %K United States %X As part of the evaluation of the ability of lineaments to map subsurface structures, the coincident lineaments which intersect the tunnel (Curry et al., this volume), were evaluated to isolate those lineaments considered to be "fracture-supported". By definition, fracture-supported coincident lineaments are those which parallel nearby surface fracture sets, mapped faults, lithologic contacts, and/or primary ductile structures; features which may be influential to subsurface groundwater flow. Of the 37 coincident lineaments delineated on the three scales of imagery studied, approximately 70% are considered to be fracture-supported: 9 of the 13 on the 1:58,000 scale images, 10 of 14 on the 1:80,000, and 8 of 10 on the 1:250,000. However, the general lack of surface exposure precludes high confidence in the assignment of fracture-supported status to most lineaments. Large areas devoid of outcrops necessitated extrapolation of regional, surface fracture patterns (domains) to help define some fracture-supported coincident lineaments. There are two occurrences where fracture-supported coincident lineaments from all three scales overlap and are parallel. One occurrence successfully maps the zone of greatest fracture density and highest groundwater inflow (>560 l/min). The other occurrence maps an area of high fracture density and significant subsurface flow (95 l/min). In addition, one other high flow zone (>190 l/min) is mapped by a fracture-supported coincident lineament from the 1:80,000 scale imagery. However, many subsurface fractures and flow zones (<75 l/min) are not mapped by the coincident lineaments regardless of whether or not they are fracture-supported. When considering all fracture-supported coincident lineaments and parallel subsurface structures, the median flow (13,600 l/day) for the mapped structures is greater than the unmapped structures (6,800 liters/day). However, this difference is only significant at the 60% confidence level.Although the tunnel sections with the greatest fracture density and highest groundwater inflows are successfully mapped by fracture supported coincident lineaments, not all water-bearing zones are delineated. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 31 %P 348 - 348 %8 1999/01/01/ %@ 00167592 %G eng %N 77 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1999 %T Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 4, Occurrence and characterization of groundwater inflows %A Williams, Katherine W. %A Stephen B Mabee %A Hardcastle, Kenneth C. %A Curry, Patrick J. %K #StaffPubs %K BEDROCK %K boreholes %K characterization %K design %K discharge %K eastern Massachusetts %K flows %K fractures %K Framingham Quadrangle %K ground water %K Hydrogeology 21 %K massachusetts %K movement %K Natik Quadrangle %K occurrence %K outcrops %K surface water %K topography %K tunnels %K United States %X All occurrences of groundwater inflows in a 9 km long, 5-m diameter section of tunnel, 70 to 90 m below grade, were compared with subsurface fracture density, bedrock topography, surface topography, type of surficial deposits, proximity to surface water bodies, and the geographic distribution (domains; Mabee et al., this volume) of surface and subsurface fractures. Subsurface fracture density was calculated for the 320 fractures (through-going fractures) that intersect the entire circumference of the tunnel. Bedrock topography was determined using bore hole data collected during the design phase of the tunnel project. Surface topography is from 1:25,000 scale topographic maps and surficial geology is based on maps of the Framingham and Natick Quadrangles. Seven surface water bodies, primarily brooks and rivers, overlie the tunnel. Five surface fracture domains are based on 1513 fracture measurements collected from 21 outcrops within 3 km of the tunnel. In the tunnel, 413 fractures (all fractures, dips>45 degrees ) comprise seven subsurface fracture domains. High groundwater inflows generally correlate with areas of high subsurface fracture density and where four or more subsurface fracture domains overlap. In addition, high groundwater inflows are also generally located near surface water bodies and below permeable surficial deposits and topographic depressions, especially those with corresponding lows in the bedrock surface. Moreover, subsurface structures which correlate with prominent surface fracture domains produce the highest volume of groundwater inflow. However, not all tunnel sections exhibiting high fracture density and overlapping fracture domains exhibit high groundwater inflows. Also, there is no correlation between areas where two or more surface fracture domains overlap and the volume of groundwater discharging to the tunnel. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 31 %P 348 - 348 %8 1999/01/01/ %@ 00167592 %G eng %N 77 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1999 %T Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 1, Lineaments and subsurface structures %A Curry, Patrick J. %A Hardcastle, Kenneth C. %A Stephen B Mabee %A Williams, Katherine W. %K #StaffPubs %K BEDROCK %K eastern Massachusetts %K fractures %K geophysical surveys %K ground water %K Hydrogeology 21 %K lineaments %K massachusetts %K metamorphic rocks %K movement %K New England %K remote sensing %K SLAR %K strike %K surveys %K tectonics %K tunnels %K United States %X Lineaments derived from three platforms; 1:250,000 Side-Looking Airborne Radar (SLAR) images, 1:58,000 Color Infrared (CIR) and 1:80,000 Black and White aerial photographs (BW), were compared to water bearing structures (n = 99) within a 9 km, 70 to 90 meter deep, east-west tunnel being constructed in eastern Massachusetts. Lineaments were drawn by three observers during two independent trials to produce 18 sets of lineaments (n = 9137) covering approximately 1,000 km (super 2) centered over the tunnel. All lineaments for each platform were compared. Three or more overlapping lineaments (azimuths within 5 degrees and within 1 mm at the scale of the imagery) define a single coincident lineament. This analysis generated three sets of coincident lineaments (n = 794), of these 37 cross the tunnel. Buffers were placed around the coincident lineaments at a distance of 1 mm from the center of the lineament at the scale of the platform (e.g. 250 m for the SLAR image). The Mann-Whitney U test was used to determine if the median flow from all tunnel structures which underlie the lineament buffer zones is significantly greater than that of all structures outside of the buffer zones. Results indicate that median flow (11,000 l/day) from structures located within the buffer zones of the BW are significantly greater at the 90% confidence level than the median flow (5,500 l/day) of structures located outside the buffer zones. No significant differences in flow were found for the other two platforms. Subsurface structures that parallel coincident lineaments (all platforms) and occur within the buffer zones have higher median flow (10,500 l/day) than those structures outside the buffer zones (6,600 l/day). However, this difference is significant at the 70% confidence level. These results suggest that, in some instances, a thorough lineament analysis can predict water-bearing subsurface structures in poorly exposed, glaciated, metamorphic terrain that has a high degree of suburban development. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 31 %P 347 - 348 %8 1999/01/01/ %@ 00167592 %G eng %N 77 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1999 %T Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 3, Surface vs. subsurface fracture characteristics %A Stephen B Mabee %A Williams, Katherine W. %A Curry, Patrick J. %A Hardcastle, Kenneth C. %K #StaffPubs %K BEDROCK %K controls %K eastern Massachusetts %K factors %K fractures %K ground water %K Hydrogeology 21 %K massachusetts %K measurement %K movement %K New England %K outcrops %K spatial distribution %K tunnels %K United States %X Major fracture sets (dip >45 degrees ), their geographic distributions (domains), and their characteristics (spacing, trace length, and planarity) were measured in surface outcrops and in a 9 km section of the tunnel (Curry et al., this volume) to determine how well fracture data collected at widely-spaced surface exposures can be extrapolated to a depth of 70 to 90 meters. For the surface fracture data set, fracture sets and domains were determined from 1513 measurements collected at 21 outcrops located within 3 km of the trace of the tunnel. Spacing, trace length, and planarity were determined from scanline measurements (n = 899). For the tunnel data set, 413 fracture measurements were made to determine major sets and domains and a smaller subset (n = 156) was used to estimate fracture characteristics.Five fracture sets (14, 38, 86, 117, and 171) were identified in the outcrops and seven sets (13, 29, 41, 62, 132, 159, and 175) in the tunnel. The 14 and 171 sets correspond well with the 13 and 175 sets in the tunnel. The 38 set observed at the surface includes parts of the 29 and 41 sets in the tunnel. The 86 set does occur in the tunnel but is undersampled because it is aligned with the tunnel. The 62 and 159 sets occur in the tunnel but are not seen at the surface. Although large areas are devoid of outcrops, comparison of surface and subsurface fracture domains indicates that only the 14 and 171 sets show a reasonable overlap with the 13 and 175 domains in the tunnel. These latter sets are the fractures generating most of the groundwater inflow into the tunnel. Median fracture spacing and trace lengths for the 13 and 175 sets in the tunnel are significantly wider and longer than the corresponding 14 and 171 sets at the surface. Fracture planarities showed no significant differences between any of the surface and subsurface fracture sets. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 31 %P 348 - 348 %8 1999/01/01/ %@ 00167592 %G eng %N 77 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B AGU Fall Conference, 2005 %D 2005 %T Field mapping and fracture characterization techniques predict groundwater preferential flow paths in fractured bedrock aquifers, Nashoba Terrane, MA %A Alex K Manda %A Stephen B Mabee %A Hubbs, S. A. %K #StaffPubs %K aquifers %K BEDROCK %K characterization %K fractured materials %K fractures %K ground water %K Hydrogeology 21 %K mapping %K massachusetts %K Middlesex County Massachusetts %K movement %K Nashoba terrane %K patterns %K preferential flow %K recharge %K reservoir properties %K substrates %K United States %X A study examining the relationship between fracture characteristics and groundwater was undertaken in the crystalline Nashoba Terrane of eastern Massachusetts. The Nashoba Terrane, a fault-bounded, highly deformed sliver of Paleozoic igneous and metamorphic rocks, covers an area of 600 sq km about 50 km northwest of Boston. Increasing industrial development coupled with population growth place significant pressure on developers to provide sufficient potable water for the population. To aid water development and management, this study examined fracture characteristics at regional, quadrangle and wellfield scales. The regional-scale work involved recording over 4000 structural measurements from 80 outcrops in the terrane. Fracture information recorded at each data station included strike and dip, trace length, spacing, termination, and fracture type. Preliminary results show that hydrostructural domains can be defined from combinations of fracture characterization and rock types. These domains are used to conceptualize general groundwater flow patterns in the subsurface: steeply dipping fractures, such as partings parallel to foliation enhance recharge potential and impose strong flow anisotropy. A different character is observed if steeply dipping joints intersect sheeting joints. In this instance, both recharge and lateral flow will be enhanced and flow anisotropy will be reduced. The distribution and intensity of particular fracture sets varies as a function of rock type, proximity to major features and local stress states. Partings parallel to foliation are prevalent in gneissic rocks whereas sheeting joints are more common in igneous rocks. Common joints are the most prevalent fractures, present in all rock types across the entire terrane. Quadrangle and wellfield scale data can be used to validate the regional-scale conceptual models. A comprehensive well-yield database was created to test the proposed models. Over 500 water wells in the terrane were evaluated to determine regions with high and low yield. The findings were evaluated in terms of location with respect to newly defined hydrostructural domain maps at both regional and quadrangle scales. Application of these hydrostructural domains in field studies can be useful not only in characterizing fracture intensity and distribution, but can shed more light on the potential of intersecting subsurface zones that could be exploited for economic gain. %B AGU Fall Conference, 2005 %7 Special supplement %I American Geophysical Union : Washington, DC, United States %C United States %V 86 %P 1477 %8 2005/12/01/ %@ 00963941 %G eng %N 52, Suppl.52, Suppl. %! Eos, Transactions, American Geophysical Union %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1996 %T Fracture characterization; valuable inputs for modeling groundwater flow in fractured bedrock %A Stephen B Mabee %A Hardcastle, Kenneth C. %K #StaffPubs %K BEDROCK %K boreholes %K California %K discontinuities %K experimental studies %K field studies %K fractured materials %K fractures %K ground water %K Hydrogeology 21 %K Madera County California %K models %K movement %K observation wells %K Raymond California %K site exploration %K spatial distribution %K transmissivity %K United States %K wells %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 28 %P 77 - 77 %8 1996/02/01/ %@ 00167592 %G eng %N 33 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 2000 %T Geochemistry of gneisses and amphibolites in the Uchee Belt of western Georgia and eastern Alabama; an ACRES progress report %A Joseph P Kopera %A Nicholas, Brian %A Todd, Dave %A Davison, Jeff %A Hanley, Tom %A Kar, Aditya %A La Tour, Timothy E. %A Edwards, Tonya %K #StaffPubs %K Alabama %K amphibolite %K chemical composition %K Columbus Georgia %K dikes %K Georgia %K gneisses %K Igneous and metamorphic petrology 05A %K inclusions %K intrusions %K metamorphic rocks %K Muscogee County Georgia %K Uchee Belt %K United States %K xenoliths %X Undergraduate students, high school teachers, and university faculty representing ACRES (Atlanta Consortium for Research in Earth Sciences) studied lineated gneiss (LG) exposed at Flat Rock Park (FRP) and vicinity in Columbus, GA, and Motts gneiss (MG) in eastern Alabama. The LG and MG are mineralogically and geochemically granitoidal lineated orthogneisses. They contain deformed mafic xenoliths, as well as aplitic, granitic and pegmatoidal dikes that cut the dominant lineation. Based on chemical analyses, the LG from FRP and the MG plot as granite on the IUGS diagrams and the Le Bas diagram. Similarity in incompatible trace element ratios (e.g., Zr/Nb) and highly evolved characteristics of aplite with respect to the host gneisses, indicate there is probably a genetic link between the MG and the FRP LG. These rocks are chemically distinct from other nearby felsic gneiss. Phenix City gneiss amphibolites from Lindsey Creek and North Highland Mills dam in Columbus were also analyzed for major and trace elements. These amphibolites are low K tholeiitic rocks with an island arc affinity and are similar to rocks from the area that have already been analyzed. The amphibolites show a wide range of fractionation (41 to 62 percent SiO (sub 2) ). Consistency in incompatible element ratios over a wide range of fractionation of some of the samples show a probable genetic relationship among the various amphibolites of Lindsey Creek. Future work should involve more extensive collecting and analysis of both felsic rocks and amphibolites in the Uchee belt. More time should also be spent describing the thin sections of the existing collection and comparing the REE patterns for the FRP, MG and other felsic rocks in the Uchee belt. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 32 %P 31 - 31 %8 2000/03/01/ %@ 00167592 %G eng %N 22 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1989 %T Ground truth? Relationship between lineaments and bedrock fabric %A Stephen B Mabee %A Hardcastle, Kenneth C. %A Donald U Wise %K #StaffPubs %K aerial photography %K BEDROCK %K fabric %K faults %K fractures %K granites %K ground truth %K igneous rocks %K joints %K lineaments %K Maine %K orientation %K pegmatite %K plutonic rocks %K quartz veins %K SLAR %K structural analysis %K Structural geology %K Structural geology 16 %K United States %K veins %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 21 %P A68 - A68 %8 1989/01/01/ %@ 00167592 %G eng %N 66 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 2014 %T Guiding principles for use of digital technology in geologic data collection and distribution %A Joseph P Kopera %A House, P. Kyle %A Schmidt, Maxine %A Clark, Ryan %K #StaffPubs %K data %K data preservation %K databases %K digital %K digital data %K digital geologic maps %K geologic maps %K GIS %K migration %X The past decade has seen a dramatic shift in the public perception of a map as a static paper document to a dynamic digital interface for addressing a specific geographic question. The adoption of digital technology for geologic data collection, compilation, and distribution has many advantages but requires a similar shift in attitudes towards the nature of data and resulting maps themselves to ensure that they remain accessible, viable, and relevant in this new paradigm. We propose a set of guiding principles for the use of digital technology in geologic data and map production: 1.) Utilize dedicated digital data professionals (DDPs): It is unreasonable to expect that geologists maintain expertise in their field and be thoroughly versed in complex and rapidly changing best practices for digital data. Following the recommendations of the National Research Council (2009), DDPs should be embedded in any research endeavor from its inception with geologists being savvy enough in digital technology to maintain productive engagement with DDPs. 2.) Use appropriate technology: Fully digital workflows and field equipment are not appropriate for all projects. Free or open-source software (FOSS) and easily available low-cost hardware (i.e., smartphones) have also met or surpassed the utility of many proprietary technology solutions thus reducing the price and increasing accessibility of data. 3.) Practice good data management: Digital data takes considerable resources and sustained effort to remain viable even shortly after its production. Best practices in data accessibility (data standards, open formats, etc.) and maintenance (refreshing, migration, etc.) in addition to robust metadata creation, through all phases of a project, are unquestionably necessary. 4.) Approach maps and digital data as living dynamic entities: Geologic data is out of date the moment it is published. A primary advantage of digital datasets is their ability to be easily updated, queried, and manipulated in infinite ways. Derivative products for specific applications are in arguably higher demand by end users than the data itself. Geologists must design for flexibility, appropriateness of use, and the persistence of their expert interpretations through development of all possible end products of and updates to the map and dataset. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %V 46 %P 75 - 75 %8 2014/01/01/ %@ 00167592 %G eng %U https://gsa.confex.com/gsa/2014NE/webprogram/Paper236362.html %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 2004 %T An update of geologic mapping in Massachusetts %A Joseph P Kopera %A Stephen B Mabee %A Scott A Salamoff %A Hildreth, Carol %K #StaffPubs %K data %K data acquisition %K data processing %K digital data %K Geologic maps 14 %K mapping %K massachusetts %K National Cooperative Geologic Mapping Program %K programs %K publications %K regional %K review %K STATEMAP %K United States %X Despite the state's relatively high population density and decades of detailed study of the bedrock geology, only about half of the 7.5' quadrangles in Massachusetts have been published as GQ series geologic maps. As the state's population continues to grow, the availability of basic geologic data becomes increasingly crucial for informed land-use and water-management decision making. Much of the published 1:24000 scale geologic mapping predates recent advances in the understanding of regional tectonics, and needs to be updated. The Office of the State Geologist has begun a geologic mapping program in Massachusetts to address these needs. Two mapping projects were conducted through the STATEMAP component of the National Cooperative Geologic Mapping program in 2003. These projects focused on 7.5' quadrangles along the I-495 corridor, which is experiencing extensive population growth and development. The first project involved conversion of published 1:24,000-scale surficial geology to digital form for 10 quadrangles in southeastern Massachusetts. A semi-automated process was developed for this project that easily converts published paper geologic maps into vectorized, georeferenced datalayers. The second project involved 1:24000-scale geologic mapping of the Marlborough quadrangle in east-central Massachusetts. Products include traditional maps of bedrock and surficial geology as well as two new prototype products: a fracture characterization map and a surficial materials map. These projects mark the first time in Massachusetts' history that quadrangle-scale geologic data will be available in digital form to consultants and stakeholders, thus greatly expediting and improving the use and analysis of all geologic data. In addition, the inclusion of fracture characterization and surficial materials maps adds substantially to the value of traditional geologic map products. The new maps provide supplemental data on the hydrologic characteristics of the bedrock and the vertical stacking of surficial deposits that previously was unavailable. STATEMAP projects in 2004 will continue to focus along the I-495 corridor, and will involve revision and new mapping in the Wilmington, Reading, South Groveland, Lawrence, Hudson, and Oxford quadrangles. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 36 %P 58 - 58 %8 2004/03/01/ %@ 00167592 %G eng %N 22 %! Abstracts with Programs - Geological Society of America %0 Journal Article %J Hydrogeology Journal %D 1997 %T Analyzing outcrop-scale fracture features to supplement investigations of bedrock aquifers %A Stephen B Mabee %A Hardcastle, Kenneth C. %K #StaffPubs %K aquifers %K BEDROCK %K boreholes %K California %K dip fractures %K field studies %K fractures %K framework silicates %K ground water %K hydrodynamics %K Hydrogeology 21 %K laumontite %K Madera County California %K mapping %K mineralization %K movement %K Raymond California %K roughness %K silicates %K United States %K zeolite group %X A case study was conducted of 79 outcrops within 150 meters of the nine, 7590 m deep boreholes at the Lawrence Berkeley Laboratory (LBL) Fracture Hydrology Field Site in Raymond, California, USA, in order to make preliminary comparisons between surface fracture data and geophysical and hydrologic testing conducted in the boreholes. The orientation, trace length, spacing, roughness, planarity, associated mineralization, and domains (the geographic distribution of specific fracture sets) of 471 fractures were measured. Five families of steeply-dipping fractures and one family of shallow dipping fractures comprise 75 percent of the data and trend 52, 62, 130, 147, 173, and 35, respectively. The geographic distributions (domains) of the families, however, show the well field to be within the domains of the 62-, 173- and 35-trending families. The steeply-dipping fractures detected in the boreholes by LBL via acoustic televiewer logging trend about 65, 173, and 30 corroborating the findings of the fracture-domain analysis. Results indicate that the boreholes are located within a laumontite-mineralized area, including a steeply-dipping, 160-trending zone, 520 cm wide, of laumontite-rich pods that transects the boreholes. Independent hydrologic tests by LBL revealed a 160-trending barrier to groundwater flow between some of the boreholes, precisely where the 160-trending zone of laumontite-mineralized pods was mapped. %B Hydrogeology Journal %I Verlag Heinz Heise : Hanover, Federal Republic of Germany %C Federal Republic of Germany %V 5 %P 21 - 36 %8 1997/01/01/ %@ 1431217414350157 %G eng %U http://link.springer.com/article/10.1007/s100400050106 %N 4 %! Hydrogeology Journal %0 Journal Article %J Ground Water Management %D 1990 %T Correlation of lineaments and bedrock fracture fabric; implications for regional fractured-bedrock aquifer studies, preliminary results from Georgetown, Maine %A Stephen B Mabee %A Hardcastle, Kenneth C. %A Donald U Wise %K #StaffPubs %K aquifers %K fractured materials %K fractures %K geophysical surveys %K Georgetown Maine %K ground water %K hydrogeology %K Hydrogeology 21 %K imagery %K Maine %K remote sensing %K Sagadahoc County Maine %K SLAR %K surveys %K United States %B Ground Water Management %I Water Well Journal Pub. Co. : Dublin, OH, United States %C United States %V 3 %P 283 - 297 %8 1990/01/01/ %@ 10479023 %G eng %U http://info.ngwa.org/gwol/pdf/900156672.PDF %! Ground Water Management %0 Journal Article %J Ground Water %D 2002 %T Correlation of lineaments to ground water inflows in a bedrock tunnel %A Stephen B Mabee %A Curry, Patrick J. %A Hardcastle, Kenneth C. %K #StaffPubs %K aquifers %K BEDROCK %K construction %K eastern Massachusetts %K Engineering geology 30 %K Framingham Quadrangle %K ground water %K hydrodynamics %K Hydrogeology 21 %K lineaments %K massachusetts %K Middlesex County Massachusetts %K Natick Quadrangle %K tectonics %K tunnels %K United States %X Lineaments derived from three image types (1:80,000 black and white, 1:58,000 color infrared, and 1:250,000 side-looking airborne radar) were compared to water-bearing features within a 9.6 km section of tunnel being constructed through foliated crystalline metamorphic bedrock in a glaciated region of eastern Massachusetts. Lineaments drawn by three observers during two independent trials (N = 9137) were reduced to three sets (one per image type) of coincident lineaments (N = 794). Thirty-five coincident lineaments crossed the tunnel. Nineteen discrete flow zones, each producing ≥ 19 L/min, were identified in the tunnel and used to quantify the reliability of lineament analysis as a method of predicting water-bearing features in glaciated metamorphic rocks. Thirteen (68%) of the flow zones correlate with coincident lineaments, six zones correlate with more than one image type, and one zone correlates with all three image types. Overall, without additional corroborating evidence, it is difficult to interpret in advance which lineaments will result in a successful correlation with water-producing zones in the subsurface and which ones will not. Most of the observed flow (80%) correlates with northwest-trending coincident lineaments; however, the majority of the flow (67%) associated with these lineaments is produced from structures that strike to the north or northeast. In addition, only 15 of the 35 coincident lineaments correlate with the flow zones, indicating that 20 lineaments are not associated with any appreciable flow. Six flow zones are undetected by the lineament analysis. %B Ground Water %I National Ground Water Association : Urbana, IL, United States %C United States %V 40 %P 37 - 43 %8 2002/02/01/ %@ 0017467X %G eng %U http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6584.2002.tb02489.x/abstract %N 11 %! Ground Water %0 Journal Article %J Ground Water %D 1994 %T A method of collecting and analyzing lineaments for regional-scale fractured-bedrock aquifer studies %A Stephen B Mabee %A Hardcastle, Kenneth C. %A Donald U Wise %K #StaffPubs %K aquifers %K BEDROCK %K coastal environment %K fractured materials %K Georgetown Island %K ground water %K Hydrogeology 21 %K Knox County Maine %K lineaments %K Maine %K mapping %K mathematical methods %K processes %K tectonics %K United States %X A new method is proposed for collecting and reducing large collections of lineament data. The method consists of three steps: (1) collection of lineament data using multiple observers, multiple observation trials, and several types of imagery; (2) reproducibility tests; and (3) domain overlap analysis. Collection of lineament data and reproducibility tests are performed by overlaying lineament maps drawn by several observers or by superimposing multiple maps prepared by a single observer and identifying lineaments which are coincident (coincident lineaments = lineaments that have azimuths within 5 ± and separation distances are within 1–2 mm at the scale of drawing). Domain overlap analysis is accomplished by measuring the trends of near-vertical fractures at outcrops distributed over the study region and comparing the spatial distribution of these trends with similar-trending coincident lineaments. Lineaments that are not reproducible and are not geographically correlative with fractures are considered unimportant and removed from the data base. The method was applied to a 44 km2 study area in Maine and resulted in a reduction in the lineament data base from 6500 to 217. Transmissivities determined for bedrock wells located within 30 meters of lineaments that are both reproducible and geographically correlative with outcrop-scale fractures are generally higher than the transmissivities of wells located near lineaments that are not separated on the basis of these criteria. Application of the method serves as an important filter by providing a more manageable lineament data base from which to begin detailed field checking and/or geophysical surveys directed toward specific lineaments. %B Ground Water %I National Water Well Association, Ground-Water Technology Division : Urbana, IL, United States %C United States %V 32 %P 884 - 894 %8 1994/12/01/ %@ 0017467X %G eng %U http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6584.1994.tb00928.x/abstract %N 66 %! Ground Water %0 Journal Article %J Special Paper - Geological Society of America %D 2013 %T Overcoming the momentum of anachronism; American geologic mapping in a twenty-first-century world %A House, P. Kyle %A Clark, Ryan %A Joseph P Kopera %K #StaffPubs %K applications %K areal geology %K cartography %K computer programs %K data processing %K digital cartography %K geographic information systems %K Geologic maps 14 %K Global Positioning System %K history %K information systems %K laser methods %K lidar methods %K mapping %K methods %K technology %K United States %X The practice of geologic mapping is undergoing conceptual and methodological transformation. Profound changes in digital technology in the past 10 yr have potential to impact all aspects of geologic mapping. The future of geologic mapping as a relevant scientific enterprise depends on widespread adoption of new technology and ideas about the collection, meaning, and utility of geologic map data. It is critical that the geologic community redefine the primary elements of the traditional paper geologic map and improve the integration of the practice of making maps in the field and office with the new ways to record, manage, share, and visualize their underlying data. A modern digital geologic mapping model will enhance scientific discovery, meet elevated expectations of modern geologic map users, and accommodate inevitable future changes in technology. %B Special Paper - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %V 502 %P 103 - 125 %8 2013/09/01/ %@ 00721077 %G eng %U http://specialpapers.gsapubs.org/content/502/103.abstract %! Special Paper - Geological Society of America %0 Map %D 1983 %T Bedrock Geologic Map of Massachusetts %A Zen, E-an %A Goldsmith, Richard %A Ratcliffe, Nicholas M %A Robinson, P %A Stanley, Rolfe S %A Hatch, Norman L %A Shride, Andrew F %A Weed, Elaine G A %A Wones, David R %K #MassGeology %K #MassGeologyMap %K #StateGeologicMap %K bedrock geology %K eastern MA %K GEOLOGIC MAP %K GEOLOGY %K map %K massachusetts %K western MA %X

(Zen et al., 1983) The 1:250,000 scale Bedrock Geologic Map of Massachusetts, published by the USGS in 1983, shows the distribution of the different rock units, faults, and other features that make up the bedrock of Massachusetts. It was compiled from published 1:24,000-scale maps., unpublished data, and field reconnaissance by the authors. Many areas of the state, however, have yet to be mapped thoroughly at 1:24,000 scale. A paper version can be ordered from the USGS Store (http://store.usgs.gov/) by searching for Product Number: 32370 or by clicking the links below. A two-volume text, The Bedrock Geology of Massachusetts, published in 1991, accompanies the map. The publication is catalogued as U.S. Geological Survey Professional Paper 1366 A-D (western Mass.) and 1366 E-J (eastern Mass.)

 

A variety of ways to download the map and text are listed in "Other Links" below.

%B USGS Unnumbered Series %I United States Geological Survey %G eng %U http://ngmdb.usgs.gov/Prodesc/proddesc_16357.htm %M USGS Store Product Number 32370 %L USGS Alternate ID GSG0021-1T %2

1:250,000

%0 Map %D 2004 %T Bedrock geologic map of the Marlborough quadrangle, Massachusetts %A Joseph P Kopera %A DiNitto, R.G. %A Hepburn, J.C. %K #BedrockMaps %K #MGSPub %K alaskite %K amphibolite %K Andover Granite %K Ashland %K Berlin %K Bloody Bluff %K Burlington Mylonite Zone %K epidote %K fault zone %K gneiss %K granite %K granofels %K Hope Valley Alaskite %K Hopkinton %K Hudson %K Indian Head Hill %K Lake Char %K Malborough %K Milford granite %K Milham Reservoir %K mylonite %K Northborough %K quartzite %K schist %K shear zone %K Southborough %K volcanic %K Waltham Tectonic Melange %K Westborough %K Wolfpen Lens %B geologic Map %7 GM-06-01 %I Massachusetts Geological Survey %G eng %2

1:24000

%0 Map %D 2005 %T [Draft] Preliminary bedrock geologic map of the Lawrence quadrangle, Massachusetts %A Castle, R.O. %A Hepburn, J.C. %A Joseph P Kopera %K #BedrockMaps %K #MGSPub %K Andover %K Andover Granite %K Bedford %K Berwick formation %K Clinton-Newbury Fault %K Dracut %K Elliot formation %K Lawrence %K Methuen %K nashoba %K North Andover %K tadmuck brook schist %K Tewksbury %B Open-File Report %I Massachusetts Geological Survey %G eng %2

1:24000

%0 Map %D 2005 %T [Draft] Preliminary bedrock geologic map of the South Groveland quadrangle, Massachusetts %A Castle, R.O. %A Hepburn, J.C. %A Joseph P Kopera %K #BedrockMaps %K #MGSPub %K Andover %K Andover Granite %K Boxford %K Boxford formation %K Clinton-Newbury Fault %K Fish Brook gneiss %K Georgetown %K Groveland %K Haverhill %K Methuen %K Middleton %K Nashoba terrane %K North Andover %K Sharpner's Pond diorite %B Open-File Report %I Massachusetts Geological Survey %G eng %2

1:24000

%0 Map %D 2005 %T [Draft] Preliminary bedrock geologic map of the Wilmington quadrangle, Massachusetts %A Castle, R.O. %A Hepburn, J.C. %A Joseph P Kopera %K #BedrockMaps %K #MGSPub %K Andover %K Andover Granite %K Assabet River Fault %K Bedford %K Billerica %K Billerica Schist %K Boxford formation %K Burlington %K Burlington Mylonite Zone %K Fish Brook gneiss %K nashoba %K North Reading %K Reading %K Spencer Brook Fault %K Tewksbury %K Waltham Tectonic Melange %K Wilmington %K Woburn %B Open-File Report %I Massachusetts Geological Survey %G eng %2

1:24000

%0 Map %D 2004 %T [Draft] Surficial geology of the Marlborough quadrangle, Massachusetts %A Hildreth, C.T. %A Byron D Stone %K #MGSPub %K #SurficialMaps %K Ashland %K Berlin %K glacial %K Hopkinton %K Hudson %K Malborough %K Marlborough %K Northborough %K outwash %K Southborough %K stratified drift %K surficial %K Upton %K Westborough %B Open-File Report %I Massachusetts Geological Survey %G eng %1

GIS and metadata forthcoming

%2

1:24000

%0 Map %D 2005 %T [Draft]Preliminary bedrock geologic map of the Reading quadrangle, Massachusetts %A Castle, R.O. %A Hepburn, J.C. %A Joseph P Kopera %K #BedrockMaps %K #MGSPub %K Andover %K Bloody Bluff Fault %K Boxford formation %K Burlington Mylonite Zone %K Danvers %K Fish Brook gneiss %K Lynn %K Lynnfield %K Middleton %K Nashoba terrane %K North Andover %K North Reading %K Peabody %K Peabody Granite %K Reading %K Sharpner's Pond diorite %K Stoneham %K Wakefield %K Waltham Tectonic Melange %K Woburn %B Open-File Report %I Massachusetts Geological Survey %G eng %2

1:24000

%0 Map %D 2010 %T Onshore-Offshore Surficial Geologic Map of the Newburyport East and Northern Half of the Ipswich Quadrangles, Massachusetts %A Hein, C.J. %A Fitzgerald, D.M, %A Barnhardt, W.A. %A Byron D Stone %K #MGSPub %K #OnshoreOffshore %K #SurficialMaps %K coastal %K Essex %K glacial %K Gloucester %K Hamilton %K Ipswich %K Newburport %K Newbury %K Newburyport %K onshore %K Plum Island %K Rowley %K Salisbury %K surficial %X This geologic map shows the distribution of surficial subaerial and subaqueous materials in the Newburyport East and northern half of the Ipswich 7.5' quadrangles (northeast Massachusetts) and the area of the Gulf of Maine immediately offshore, to an approximate depth of 80 m below modern mean sea level (MSL). This map was compiled from the onshore surficial geologic map of Stone et al. (2006) and the offshore surficial mapping of Barnhardt et al. (2009), and includes newly mapped shallow offshore geologic features. Onshore and offshore units are continuous across the shallow- water zone (0-20 m below MSL). The definition of map units is based on lithologic characteristics (grain size, mineralogy and structure), stratigraphic relationships and relative ages, and sedimentologic processes. The map describes the evolution of the surficial geology in terms of the sediment sources, transportation mechanisms, and depositional, post-depositional and modern processes that have acted on the late Quaternary sediments that compose these units. Cross sections are derived from subsurface data compiled from the literature and collected as part of this study. This maps supersedes MGS OFR 2011-01 %B Geologic Map %7 GM13-01 %I Massachusetts Geological Survey %G eng %1 Note: this version has been peer reviewed, edited, and supersedes all previously published, open-file, versions of this map (2010) %2 1:24000 %0 Map %D 2014 %T Preliminary Bedrock Geologic Map of the Hudson 7.5' Quadrangle Worcester and Middlesex Counties, Massachusetts %A Joseph P Kopera %A W.R. Hansen %K #BedrockMaps %K #MGSPub %K acton granite %K ayer granite %K Berlin %K Bolton %K Boxborough %K Clinton-Newbury Fault %K gneiss %K Harvard %K Harvard Conglomerate %K Hudson %K magnetite %K Malborough %K marble %K migmatite %K nashoba %K Stow %K tadmuck brook schist %K Vaughn Hills %X The Hudson quadrangle straddles the Clinton-Newbury Fault Zone (CNFZ), which separates low metamorphic grade Silurian turbiditic metasediments and Devonian plutons of the Nashua sub-belt (Robinson and Goldsmith, 1991) of the Merrimack Terrane to the northwest from the high-grade, migmatitic Cambro- Ordovician arc-complex of the Nashoba Terrane (Walsh et al., 2011; Loan 2011). This general area comprises the suture between the Gander and Avalon composite terranes of the Northern Appalachians (cf. Hibbard et al., 2006). Metasedimentary rocks of the Merrimack Terrane are generally poorly exposed, with intrusives (Day, Dayp, SDgdt) and the Clinton-Newbury Fault zone and associated rocks (Ot) forming a prominent northeast trending ridge (Oak Hill in the town of Harvard) marking the eastern bordering slope of the Worcester Plateau (Emerson, 1917, p. 16). Elevation and local topographic relief gradually decreases and glacial cover increases to the east-southeast across the strike of the Nashoba Formation, which, locally, forms low-relief NE-trending strike-parallel ridges. These are cut by dramatic cross-strike cliffs and glacial spillway gorges developed along cross-strike joints and brittle faults, most notably on the western slopes of Rattlesnake Hill, southern slope of Powder House Hill and in Camp Resolute in Bolton in the west-central portion of the quadrangle, and the southern slope of the hill along the west side of Codman Hill Road in Harvard in the north-central portion of the quadrangle. The migmatitic ortho- and paragneisses, schists and associated metavolcanic rocks of the Nashoba Formation (_Sn) form a northeast striking belt underlying the southern two-thirds of the quadrangle. These are intruded by a variety of presumed Ordovician to Silurian intermediate intrusives (OSd, OSaqd) and Devonian or younger tonalites to granites (Dan, Danp, Dac). %B Open File Report %7 14-01 %I Massachusetts Geological Survey %8 09/2014 %G eng %1 Note: This map supersedes "Preliminary bedrock geologic map of the Hudson quadrangle, Massachusetts", MGS map published in 2005 Report accompanies map-- be sure to download both! %0 Map %D 2005 %T Preliminary bedrock geologic map of the Hudson quadrangle, Massachusetts %A Joseph P Kopera %A Hansen, W.R. %K #BedrockMaps %K #MGSPub %K acton granite %K ayer granite %K Berlin %K Bolton %K Boxborough %K Clinton-Newbury Fault %K gneiss %K Harvard %K Harvard Conglomerate %K Hudson %K magnetite %K Malborough %K marble %K migmatite %K nashoba %K Stow %K tadmuck brook schist %K Vaughn Hills %X This map has been superseded by MGS OFR 14-01: Preliminary Bedrock Geologic Map of the Hudson 7.5' Quadrangle Worcester and Middlesex Counties, Massachusetts This map is an interim update to W.R. Hansen's 1956 Bedrock Geology of the Hudson and Maynard 7.5' quadrangles (USGS Bulletin 1038). This draft version of the Bedrock Map of the Hudson Quadrangle (Kopera, 2005) has been removed pending the future release of an updated version. The above version should be considered outdated. If you would like a copy of this map, please contact Joseph Kopera at jkopera[at]geo[dot]geo[dot]umass[dot]edu

%B Open-File Report %I Massachusetts Geological Survey %G eng %2

1:24000

%0 Report %D 2003 %T Preliminary Geology and Assessment of Groundwater Potential at Cresta de Sacramento, Palpa, Peru: Field Report – July 2002 %A Donald U Wise %A Stephen B Mabee %A Hardcastle, K.C. %K #StaffPubs %K aquifer %K Atacama Desert %K groundwater %K lineament %K Nazca lines %K Peru %X

31 pages contact sbmabee @geo.umass.edu

%P 31 %G eng