%0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1998 %T Comparison of lineaments with bedrock structures along a cross-strike transect, eastern Massachusetts %A Curry, Patrick J. %A Williams, Katherine W. %A Stephen B Mabee %A Hardcastle, Kenneth C. %K #StaffPubs %K aerial photography %K BEDROCK %K eastern Massachusetts %K faults %K geophysical surveys %K imagery %K lineaments %K massachusetts %K remote sensing %K SLAR %K Structural geology 16 %K surveys %K tectonics %K United States %X Lineament data derived from three platforms, 1:58,000 color infrared photography (N = 770), 1:80,000 black and white photographs (N = 1106), and 1:250,000 SLAR imagery (N = 521), were used to determine the degree of coincidence between mapped faults and lineaments along a cross strike transect in eastern Massachusetts. The study area extends 27 km in an east-west direction and 8 km north-south and is located along the trace of a tunnel currently being constructed approximately 90 m below grade. Structural data are presently being collected from surface exposures along the tunnel trace and from within the 5 m diameter tunnel bore. These structural data will be compared with lineament data in the future. Reported here are the results of a comparison between the locations of lineaments and the position of major faults mapped on the Bedrock Geologic Map of Massachusetts (1:250,000). Lineaments were first mapped on acetate overlays in two independent trials and compared to determine which lineaments could be reproduced at the same geographic location. Reproducibility results indicate that 21 to 33% of the lineaments can be reproduced at the same spatial position and are comparable to results obtained from other studies. The length of reproducible lineaments proximal to and approximately parallel with mapped faults was compared with the total length of faults (137 km) within the study area. Results show that a small percentage of the faults are coincident with reproducible lineaments. Three percent of the lengths are mapped by reproducible lineaments observed on the SLAR imagery, 7% by the 1:80,000 scale photographs, and 5% by the 1:58,000 color infrared photography. This indicates that 97%, 93%, and 95% of the reproducible lineaments, respectively, are related to other geologic features in the bedrock or nothing at all. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 30 %P 278 - 278 %8 1998/01/01/ %@ 00167592 %G eng %N 77 %! Abstracts with Programs - Geological Society of America %0 Conference Proceedings %B Abstracts with Programs - Geological Society of America %D 1999 %T Factors influencing groundwater inflows in a newly constructed cross-strike tunnel, eastern Massachusetts; 2, Fracture-supported coincident lineaments and subsurface structures %A Hardcastle, Kenneth C. %A Curry, Patrick J. %A Williams, Katherine W. %A Stephen B Mabee %K #StaffPubs %K BEDROCK %K controls %K eastern Massachusetts %K factors %K fractures %K ground water %K Hydrogeology 21 %K imagery %K lineaments %K massachusetts %K movement %K New England %K outcrops %K Structural geology 16 %K tectonics %K tunnels %K United States %X As part of the evaluation of the ability of lineaments to map subsurface structures, the coincident lineaments which intersect the tunnel (Curry et al., this volume), were evaluated to isolate those lineaments considered to be "fracture-supported". By definition, fracture-supported coincident lineaments are those which parallel nearby surface fracture sets, mapped faults, lithologic contacts, and/or primary ductile structures; features which may be influential to subsurface groundwater flow. Of the 37 coincident lineaments delineated on the three scales of imagery studied, approximately 70% are considered to be fracture-supported: 9 of the 13 on the 1:58,000 scale images, 10 of 14 on the 1:80,000, and 8 of 10 on the 1:250,000. However, the general lack of surface exposure precludes high confidence in the assignment of fracture-supported status to most lineaments. Large areas devoid of outcrops necessitated extrapolation of regional, surface fracture patterns (domains) to help define some fracture-supported coincident lineaments. There are two occurrences where fracture-supported coincident lineaments from all three scales overlap and are parallel. One occurrence successfully maps the zone of greatest fracture density and highest groundwater inflow (>560 l/min). The other occurrence maps an area of high fracture density and significant subsurface flow (95 l/min). In addition, one other high flow zone (>190 l/min) is mapped by a fracture-supported coincident lineament from the 1:80,000 scale imagery. However, many subsurface fractures and flow zones (<75 l/min) are not mapped by the coincident lineaments regardless of whether or not they are fracture-supported. When considering all fracture-supported coincident lineaments and parallel subsurface structures, the median flow (13,600 l/day) for the mapped structures is greater than the unmapped structures (6,800 liters/day). However, this difference is only significant at the 60% confidence level.Although the tunnel sections with the greatest fracture density and highest groundwater inflows are successfully mapped by fracture supported coincident lineaments, not all water-bearing zones are delineated. %B Abstracts with Programs - Geological Society of America %I Geological Society of America (GSA) : Boulder, CO, United States %C United States %V 31 %P 348 - 348 %8 1999/01/01/ %@ 00167592 %G eng %N 77 %! Abstracts with Programs - Geological Society of America %0 Journal Article %J Ground Water Management %D 1990 %T Correlation of lineaments and bedrock fracture fabric; implications for regional fractured-bedrock aquifer studies, preliminary results from Georgetown, Maine %A Stephen B Mabee %A Hardcastle, Kenneth C. %A Donald U Wise %K #StaffPubs %K aquifers %K fractured materials %K fractures %K geophysical surveys %K Georgetown Maine %K ground water %K hydrogeology %K Hydrogeology 21 %K imagery %K Maine %K remote sensing %K Sagadahoc County Maine %K SLAR %K surveys %K United States %B Ground Water Management %I Water Well Journal Pub. Co. : Dublin, OH, United States %C United States %V 3 %P 283 - 297 %8 1990/01/01/ %@ 10479023 %G eng %U http://info.ngwa.org/gwol/pdf/900156672.PDF %! Ground Water Management